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series; and(5) concrete examples from the application of Volterra
series method to nonlinear circuit problems.

In presenting the important aspects of the Volterra series method
we deal with the applicability and the convergence of the series.
Recursive relationships for the upper bound on the error incurred when
the Volterra series is truncated are derived for an important class of
nonlinear system problems. It is shown how this upper bound can be
directly related to the 11 norm of the linear kernel function and the
bound on the input of the linearized system. An example of determining
the bound on the input function in terms of the 11 norm of the linear
kernel function to assure the convergence of the series solution is
also given.

The characterization of multiple polynomial type nonlinearity cir-
cuits (systems) using the Volterra series is done by determining the
Volterra Kernels, or their transforms. An approach based on applying

multi-dimensional transforms directly to a set of system equations for
systematically obtaining the transform domain description of the kernel
functions is developed. The case of multiple input circuits is also
treated.

In studying the response of nonlinear circuits, relationships
between sinusoidal steady state and zero-state transient response and
the transform domain description of the kernel functions is given. We
make use of the "association of variables" in the transform domain to
obtain the zero-state transient response and show how a symbolic
analysis on a digital computer will provide both types of solutions -

namely, sinusoidal steady-state and zero-state solutions.

Algorithms for adapting the Volterra series method for the com-
puter-aided distortion and zero-state transient analysis of mildly
nonlinear circuits are developed next. A symbolic approach is used
which not only improves the computational efficiency but also provides
a link to the earlier ideas on convergence, etc. An overview of the
digital computer program PRANC, which uses the Volterra series method,
is also given. "

Lastly, welp'p-l PRANC for the determination of intermodulation
distortion in a bipolar transistor amplifier.
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CHAPTER 1

INTRODUCTION

1-1. Introduction

The superposition property shared by all linear systems makes it

possible to develop unified methods of analysis and synthesis of these

systems. By contrast, nonlinear systems do not share this property and

as such no single method exists at this time which can be applied to the

analysis and synthesis of all such systems.

The area of nonlinear systems analysis, however, remains an impor-

tant area of research. Most devices which are Linear in a certain re-

gion of operation may reveal a nonlinear behavior when operated in a

different region. Devices such as diodes, transistors, tunnel diodes,

etc., which are ubiquitous to all electronic circuits, are inherently

nonlinear (except in a very small region of operation). The analysis of

circuits containing such devices is an important problem.

In the analysis of nonlinear systems, two alternatives are avail-

abLe: The first possibility is to take a problem-dependent analysis ap-

proach; that is, take a specific nonlinear system and perform a detailed

analysis on it, and, in the process, develop some efficient method of

analysis. In general, this "new" method may not be useful for other

nonlinear system problems. The second alternative is to develop and ap-

ply an analysis method which is appLicable to a broad class of nonlinear

systems, and is not oriented towards a specific system.

10,



In the present day, when computer-aided analysis pervades many

areas of science and engineering, the computer has become an important

arbiter in the success and popularity of an analysis method. Even a

fairly general analysis method may remain in oblivion if it is found -

or thought - unadaptable to computer-aided analysis.

The Volterra functional series r1,21 for nonlinear system analysis

may be regarded as one such method: it is applicable to a large class

of nonlinear system problems, but is not widely used in engineering cal-

culations. Although much theoretical work E3-6,12-14,15-24] has been

done on this method over the past two decades, the applications of this

method have been limited in their scope. Most authors of these publica-

tions have ignored the computational aspect of this method, and those

who have considered it have deemed this method as cumbersome or unadapt-

able to computer-aided analysis. In this report we will use the Volter-

ra series as a basis for computer-aided circuit analysis of nonlinear

circuits, and, in the process, introduce some interesting aspects of the

method.

An overview of some nonlinear system analysis methods is given io

section 1-2, with special emphasis on the Volterra series approach.

Section 1-3 presents the objectives of this investigation. Finally, a

glimpse of the results of this research effort, along with the organiza-

tion of this report, is presented in section 1-4.

1-2. Nonlinear System Analysis Methods.

It is indeed rare to find a nonlinear system analysis problem which

has a closed-form solution. One must then resort to using approximation

methods for gaining insight into the system behavior. The broad ca-

24:



tegory of approximation methods can be roughly broken into two groups:

1) anaLytical methods, which often yield qualitative and quantitative

information about the system, and 2) numerical methods, which give quan-

titive information about the system. The well-known methods belonging

to the latter group are: 1) polynomial approximation to the solution

function, leading to the Numerical Integration methods; and 2) Taylor

series approximation of the solution, Leading to the Runge-Kutte Type

methods. Our survey on the approximation methods will deal with the

analytical methods only. We consider some of them in the following

sub-sections.

1-2.1 Iteration Method. A method for solving nonlinear differential or

integral equations is based on the process of successive iteration,

called the iteration method. This process can be performed in a number

of ways, but the basic procedure is the same. The nonlinear equation is

first solved by neglecting certain terms - generally the nonlinear terms

- in the equation. The resulting solution is then re-substituted in the

system equation without neglecting any t'rms. This process is repeated

and, under well defined conditions 15,18,351, each resulting solution

is a better approximation to the actual solution.

When nonlinear differential/integral equations with polynomial type

nonlinear terms are solved via the iteration process, the implementation

involves the actual squaring, cubing, etc., operations. When sinusoidal

steady state response is obtained using this method, the approximation

to the entire output spectrum is obtained in one step, in contrast to

some other methods, which give new distortion terms with each step.

1-2.2 Perturbation Method. Like the iteration method, the perturbation

-a
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method is applied in a wide variety of ways. This method is generally

applied to nonlinear differential equations, in which a small parameter

is associated with the nonlinear terms, by introducing a dummy variable

to help dissolve the nonlinear differential equation into a sequence

linear differential equations with nonlinear terms which can be solved

in a bootstrapping manner. The linearized system is first solved. The

resulting solution is used to solve the next system equations involving

the quadratic terms. This is followed by solving the linear differen-

tial equations with cubic terms, and so on. The solutions obtained at

each step are added to yield the approximation to the actual solution,

thus giving a series type approximation.

The description of the procedure above is the basic perturbation

method. However, in some nonlinear problems this approach, when applied

as above, leads to serious convergence problems. The method is then

modified to get rid of the so-called "secular terms," which grow up in-

definitely as t - [17,18J.

1-2.3 Volterra Series Method. The Volterra series method is a type of

functional series which relates the system input, x(t), to the system

output, y(t), as:

*n
y(t) = nf h( 1 ""*"n) = r1 X(t-Ti) dT. (1-1)

n1- n-fold i=1

where hn is the n-th order kernel function, whose n-dimensional

transform is called the n-th order transfer function. CLearly, the sys-

tem characterization, using Volterta series, is done by determining

these kernel functions, or their transforms. The solution obtained is

_7



of a series type.

Wiener t2] first applied this method to calculate the response of a

nonlinear system with memory to a Gaussian noise input. Much of

theoretical work on this method was done in the late 50's and early

60's. Brilliant [43 studied the convergence of the series for bounded

inputs. George 15] devised a "system of algebra" for combining Volterra

systems and developed the "association of variables" technique for

directly going from a multi-dimensional transform description to the

one-dimensional transform description. Zames E33 studied Volterra sys-

tems when placed in a feedback loop. Bedrosian and Rice [123 and Rudko

and Wiener [373 give a set of formulae for Volterra systems driven by

random inputs. This set of formulae have been applied to Gaussian ran-

dom inputs only.

The approach has also been applied to specific problems. Van Trees

C9] characterized the phase-locked loop with a nonlinearity. Bedrosian

and Rice 112] and Baranyi E383 used the method to calculate and compen-

sate the distortion incurred in an FM signal, respectively. Narayanan

173 and Gopal, et. al. 1363 calculated the intermodulation distortion in

transistor amplifiers. The modeling of communication receivers using

Volterra series was done in C103. Ewen (11] studied the identification

of Volterra systems and Naditch E133 applied the approach for high fre-

quency calculations. The relationship between Volterra series and Pi-

card iteration, for a class of nonlinear system probLems, was developed

by Leon and Shaefer C193.
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1-3. Objectives of the Investigation.

In the analysis of nonlinear systems, two main classes of solutions

are generally sought: 1) transient, and 2) steady state. The basic

goal of this investigation is to obtain these solutions for nonlinear

circuits via the Volterra series method. Before proceeding with the

main subject of this sub-section, we briefly provide the motivation for

using Volterra series.

The most commonly used present-day approach for analyzing nonlinear

systems is numerical integration. The nonlinear differential equations

are integrated from some initial time, to, to some final time, tf. When

the sinusoidal steady state response is sought, the value of tf chosen

is usually large to insure that all transients have decayed. A fast

Fourier transform then yields the frequency components of the output

response. A more efficient method for obtaining the sinusoidal steady-

state response is to pose the analysis problem as a two-point boundary

value problem t31,323 and then apply an iterative two step algorithm.

This approach, however, allows only single frequency inputs.

The problems involved in the numerical integration method are well

known [293. These problems notwithstanding, there are other inefficien-

cies. When one is solely interested in the sinusoidal steady state

response, the computation expended in reaching close to tf is a waste.

This inefficiency grows as poles of the linearized system get close to

the j -axis, as is often the case in many quasi-linear communication

circuits.

Other methods such as the harmonic balance or the describing func-

tion method are seldom used, simply because the assumption behind these



methods render them undependable. The Picard iteration method can also

be used for nonlinear system analysis. This method aLso has limitations

when used for computer-aided analysis, particularly when multi-tone in-

puts are present. The basic perturbation method and Volterra series are

alike when applied to nonlinear circuit analysis problems.

We now return to the main subject of this sub-section, namely, the

goals of this investigation.

As mentioned in the previous sub-section, the nonlinear system is

completely characterized by the Volterra kernel functions, or their

multi-dimensional transforms, referred to as Volterra transfer func-

tions. In analyzing a nonlinear circuit, the first problem therefore is

to characterize it.

Once the kernel functions or the transfer functions are known, we

can determine the response of the circuit. However, since the Volterra

series is an infinite series, the error incurred as a result of trunca-

tion at a finite term must be investigated. This leads to the problem

of convergence. We Look into how the series converges for a class of

lumped nonlinear circuits.

Next we investigate the implementation of the Volterra series

method on a digital computer. In doing so, we first develop the basic

algorithm for adapting this method for computer-aided analysis and then

actually implement it for obtaining the ste~dy-state response of cir-

cuits with multiple nonlinearity, multiple multi-tone input sources.

The determination of the transient response from the Votterra transfer

function for Laplace transformable inputs is also investigated.

.1.
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In summary, the goals of this investigation can be categorically

stated as:

1) Devise a systematic way of deriving the Volterra kernel func-

tions, or their transform domain description.

2) Determine a method of estimating the error incurred as a result

of truncating the series solution at a finite term.

3) Obtain an algorithm for adapting the Volterra series method for

analyzing multiple nonlinearity circuits.

4) Implement the algorithm of (3) as a computer program.

BefQre concluding this subsection, we make the following comment:

Many papers and theses on the theoretical aspects of Volterra series

have appeared in the literature, most of which have been included in the

References. After studying these references, one is still left with the

most practical questions: How do we apply this method to the real world

nonlinear circuit problems? How do we use this approach for analyzing

and computing the behavior of a nonlinear system problem at hand?

The motivation behind this research was to seek answers to the

above fundamental questions and also remove the misconception that the

Volterra series method is cumbersome for computer analysis. We feel

that this method could be employed in a wider variety of engineering

calculations than is presently the case. The contents of this report

are therefore centered around the practical aspects concerning Volterra

series.

'i 8



1-4. Organization of the Report

In addition to this introductory chapter, this report comprises six

chapters.

Chapter 2, entitLed "Volterra Series", discusses the analysis

method (1-2.3) which forms the basis of this investigation. Commonly

used terminology and the salient features associated with the series are

presented. The applicability along with the convergence of the Volterra

series is discussed. In treating the topic of convergence, we concern

ourselves not with abstract nonlinear equations, but with a concrete

class of time-invariant nonlinear system equations with polynomial type

nonlinearities. Recursive relationships, which provide an estimate of

the error due to truncating the series (1-1), for this class of non-

linear differential equations are developed. Knowing the 1 norm of the

Linear kernel function, one can estimate the number of kernel functions

that needs be derived to meet a prescribed error criterion. When the

solution is sought during a finite time interval, the conditions for

which the Volterra series converges are given in [21,223. However, for

the interval [--,-], convergence of the series has not been proven. We

present an example, based on 1233 and the new recursive relationships,

to show how the bound on the input, in terms of the Z norm of the

linear kernel function, for which the series in this interval converges

can be derived.

In Chapter 3, we deal with the topic of multiple nonlinearity cir-

cuit analysis. In dealing with this topic we develop a systematic

method of obtaining the transform domain description of the Volterra

kernel functions for a large class of nonlinear systems. Our approach

t 9
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relies on the application of multi-dimensional transforms, in contrast

to the "harmonic input" method used by other authors [7,12-143. This

new approach, besides being more intuitive, avoids the morass of algebra

involved in the other approaches. The determination of Volterra

transfer functions for multiple nonLinearity circuits with single inputs

is described. The extension to multiple inputs is also discussed brief-

ly.

Chapter 4 deals with the determination of the sinusoidal steady-

state and zero-state transient responses from the Volterra transfer

functions. The case of multi-tone inputs is considered, and the deter-

mination of the responses for calculating the distortion indices at the

various and many frequencies is discussed. The fact that convolution in

the time-domain becomes multiplication in the transform domain, along

with the "association of variables" technique, is exploited to show how

the zero-state transient response can be determined for inputs which are

LapLace transformabLe and factorable. Nonlinear lumped systems with

such inputs obviate the need for any numerical integration. With the

complete pole-residue information of the linearized system, it is shown

that one can determine the time-domain response for such inputs.

The ideas gathered in Chapters 2, 3, and 4 are used to develop al-

gorithms for most "efficiently" implementing the Volterra series method

for nonlinear circuit analysis on a digitaL computer. This is the topic

of Chapter 5. The fundamental idea used in this development is the use

of semi-symbolic [293 analysis of the linearized circuit. Through this

approach, many advantages are accrued: 1) repeated inversion of a

"large" matrix is avoided; 2) the pole-residue information obtained can

10



be used for zero-state transient analysis; 3) the pole-residue informa-

tion is directly related to the 1I norm of the linear kernel function,

which, in turn, is related to the truncation error (Chapter 2); 4) the

functional description of the higher order transfer functions can be ob-

tained from the functional description of the linear functions (Chapter

3). Thus, Chapter 5, in a sense, lends unity to this whole investiga-

tion.

Chapter 6 gives an example from the use of PRANC. Various ramifi-

cations from the results obtained are discussed.

Chapter 7 is reserved for concluding remarks and some topics of

further research.

tIII 11



CHAPTER 2

JOLTERRA FUNCTIONAL SERIES

2-1. Introduction

In many of the problems encountered in nonlinear systems analysis,

it is difficuLt - if not impossible - to find explicit cLosed-form ex-

pressions for the solution. Approximation for the solution must then be

sought. Several methods [16-183 which yield approximate solution are

avaiLabLe, and were discussed in the previous section.

The intention behind using the VoLterra functional series is funda-

mentaLly to evaluate solutions which cannot be obtained in cLosed form,

and therefore the solution obtained from this approach wiLL involve an

approximation. Whenever approximation methods are used, the question of

convergence is an important consideration. In this section we present

the general convergence properties of the VoLterra series method. In

dealing with this topic we reLy on the results of 1223. These results

are extended to an important class of nonlinear systems by establishing

the bounds on the output in terms of the bound on the input and the L 1

norm of the impulse response of the Linearized system. We believe that

these results are of more practical value to a nonlinear system analyst

and designer.

Other theoretical considerations, such as the appLicabiLity of the

method and input-output uniqueness are aLso briefly discussed. This

discussion relies heavily on the works of George [53, BriLLiant [43.

In section 2-2 we present the VoLterra functional series represen-

tation of nonlinear systems aLong with the appLicabiLity of the method.

In discussing the appLicabiLity we present a sufficient condition 143

12 4



for a nonlinear system to be representable by the functional series

method.

Section 2-3 is used to illustrate the application of the Volterra

series method for obtaining the approximate solution of a general non-

linear time-invariant differential equation.

Section 2-4 deals with the convergence properties of the Volterra

functional series. Both the single nonlinearity case and the multiple

nonlinearity case are discussed in this sub-section. A brief exposition

on the stability of solutions is also presented. The stability con-

sidered here is that the response, y(t), of the system remains bounded;

that is, y(t) < -, for all t > to.

2-2. Volterra Functional Series

Consider the time-invariant nonlinear system of Figure 2-1, with an

input, x(t), and an output, y(t). The nonlinear system acts as an

operator that maps the function x(t) into a function y(t); that is

y(t) = SEx(t)] (2-1)

S
x(t) (Nonlinear System) y(t)

Fig. 2-1. A time-invariant nonlinear system

13I l ...
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The basic idea behind the Volterra functional series is to approximate S

by a series of functionals. This idea is analogous to the case of func-

tions, where any function, under some well-defined conditions, can be

approximated by a series of functions, say, for example, polynomials.

Furthermore, for polynomials, the Weierstrass theorem shows that any

continuous function can be approximated arbitrarily closely in the limit

in a region by a sequence of polynomials [33). Similarly, it has been

shown* that for a continuous functional Slx(t; t0 < t < t1)], there ex-

ists a sequence of functionals which approximate S arbitrarily closely

in the limit. While the existence of these sequence of functionals is

proved, their method of determination is not given.** The Volterra func-

tional series is therefore a type of functional series used for approxi-

mating S. It relates the input, x(t), to the output, y(t), as follows:

n
y(t) = ( f h 1 ,.-.,) l x(t-r )d-r (2-2)

n n-fold n p=l p p

where hn (T 1 ,.... n ) is known as the time-domain Volterra kernel of order

n. It should be clear that the nonlinear system characterization is

done through the determination of these kerneL functions; for, once we

know them, the output function can be determined from eqn. (2-2) for a

known input function. For causal kernel functions, the Limits of in-

tegration are between 0 and -, i.e. t0 is taken to be zero.

*Van Trees [83 cLaims that this was done by Frechet. For original

reference see (83.
**This again is analogous to the case of functions: the existence of

the sequence of approximating functions is proved by Weierstrass,
but a method of finding these functions is not given. We then
resort to using orthogonaL poLynomiaLs, etc. as basis functions.

14
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Two well-known cases are readily derived from eqn. 2-2: First, when

the set of kernels {h2,h3,...} are zero, eqn. (2-2) reduces to the

well-known convolution integral of a linear system; and, two, when the
n

kernel hn is given by an  s(-p ), then eqn. (2-2) represents the out-
p=l

put of a nonlinear, memoryless system.

Before proceeding with the discussion of the applicability of Vol-

terra functional series, we point out some important features and defin-

itions associated with the series:

(a) The term order with respect to an output component is often

used. Order in this context is defined as the number of times the input

is multiplied with itself in the convoLution integrals appearing in eqn.

2-2. Due to this definition of order, it is often more convenient to

write the series as:

y(t) = ny n(t) (2-3)

nln

where

n
Y(t) f...fh 1 n )  x(t-c )dtp (2-4)

-f o'd n ""p p

Equation (2-3) then represents the output, y(t), as a summation of the

outputs of order 1,2,3,....

(b) As shown in eqn. (2-4), the nth order output functional is

equal to the convolution of the kernel hn with the n-fold product of the

system input values. Thus, if the input is an impulse function, then hn

can be viewed as the nonlinear impulse response function of order n,

15



whose n dimensional transform can then be called the nonlinear transfer

function of order n [10,14).

(c) The Volterra series can be used to characterize nonlinear sys-

tems in which the present output depends on the present and past values

of the input function. Such systems are referred to as "systems with

memory".

(d) The kernel functions themselves are not necessarily independent

of each other, but they are independent of the system input. Thus, a

parallel system realization of the form shown in Fig. 2-2 describes the

nonlinear system being studied. For obtaining an nth order response, it

follows that the first n kernel functions, or their transform domain

description, must be determined.

(e) Some important advantages of the Volterra series method are

that it places the input-output relation in explicit form and allows us

to think of the system in terms of functional blocks, as shown in Fig.

2-2.

16



x(t) 
(t)

Fig. 2-2. Volterra series equivalent system representation.

This often allows us to deduce qualitative properties about the system

which may not be clear from the differential/integral equations used to

describe the system.

We now proceed with an important aspect of the VoLterra series

method: its appLicabiLity. Much of the recent work on this topic was

done by Brilliant 14], who introduced a new topological space to define

the concept of a continuous system mathematicaLLy and showed that such

systems could be approximated by the functional representation.

Once again consider the nonlinear system of Fig. 2-1. Let xl(t)

and x2 (t) be the inputs to the system which produce y(t) and y2(t) as

outputs, respectively. We define the distance between the input func-

tions and the output functions as foLLows:

17
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II

dl1 (x 1,'X2) f Ex1C(T) - X 2Ci,))dTl , t 1 > 0 (2-5)
t -ti

and

d2 (yly 2) = 1Yl(t) - y2 (t) (2-6)

where yl(t) = SX (t) and y2(t) = SIx2 (t). Intuitively, we can say

that S is a continuous system if d2 is small when d is small. Brilli-

ant [43 gave the following mathematical definition of a continuous sys-

tem: For a time-invariant system S with bounded inputs x1 (t) and x2 (t),

S is continuous if for any c > 0, there exists a 6 > 0, T > 0 (T suffi-

ciently Large, 6 sufficiently small) such that if d1 < 6 for 0 < t1 < T,

then d2 < E. It has been shown [4] that if S is continuous, according

to the above definition, then for any c > 0 there is a polynomial system

S such that, for a bounded input x(t), $I[x(t)] - S¢x(t)]] < c.£

It should be noted that the distance functions defined in eqns.

(2-5) and (2-6) are not unique, and that other functions could have been

chosen. The definition of continuity stated above is just one defini-

tion and, therefore, the aforementioned condition for S to admit a func-

tional series representation is only a sufficient condition, and not a

necessary one.

The conditions on the system S that admits a Volterra functional

series description can be qualitatively summarized as follows:

(a) Output is a singLe valued function of the input.

(b) S is time-invariant.*

*The VoLterra functional series has been applied to time-varying

4! systems also. See, for example, E393.
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(c) Small perturbations in the input do not produce abrupt changes

in the output.

2-3. Derivation of the Volterra Series: An Example

The basic problem in applying the Volterra series method to non-

linear systems is the determination of the kernel functions. In this

section we present an approach for deriving these kernel functions. A

direc.t and more algorithmic approach, which also shows the similarity

between the Volterra series method and the perturbation method 17], is

given in section 3.

We consider a system with a single nonlinear element and the fol-

lowing differential equation which provides the input-output relation-

ship:

N
Li ly(t)] + eL 2 E n ayn (t) = x(t) (2-7)

n= 2 n

where L1 and L2 are linear operators, defined as follows:

dm din 1

L 1[ . = dt m [3 + bn_- 1  193 + ... + bo[') (2-8)

and

L2Eo = d + (2-9)
-mO

where E, and bi are constants. Notice that if El = E2 = 0, we have a

memorytess nonlinearity such as a resistor; when el or c2 are non-zero,

we have a memory-type nonlinearity such as a capacitor or an inductor.

Sj 19
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Thus, eqn. (2-7) describes a Large class of nonlinear systems. We now

proceed to determine the various kernel functions.

If c = 0, eqn. (2-7) is the Linear differential equation:

L1Ey(t)l = x(t) (2-10)

Denoting the impulse response of this differential equation by h(t),

then eqn. (2-10) is known to have a zero input solution plus a zero

state solution. That is,

t
y(t) = zero input solution + fh(t-r)x(T)dr (2-11)

to

and, second, the steady-state solution

t
y(t) = fh(t-T)x(r)dr (2-12)

which arises as a limiting case of eqn. (2-11) when all transients have

decayed. The forcing function x(t) is, in this case, assumed to act at

all times t, -- < t < -.

We now derive the Volterra series for eqn. (2-7). We assume that

for t < 0, x(t) = y(t) = 0. Equation (2-7) can then be converted into a

nonlinear integral equation by applying the inverse operator to L1,

which, under the assumed initial conditions, is just the following:

ELl (p) 3 - 1x(t) fh(t-)x(r)dr (2-13)
0

d

where p =d-, and h(r) = 0 for T < 0. The resulting nonlinear integral

20.
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equation is:

+ eh(t-2)LEEa ynC)) 3 h(t-)x(r)dr (2-14)
0 n=2 0

We now assume that y(t) is given by:

y(t) = y1 (t) + y 2 (t) + .. + YK(t) + (2-15)

where yi(t) denotes an i-th order output. Recalling that the order of

an output is defined as the number of times the values of the input is

multiplied by itself in the convolution integral, we immediateLy get:

Yl(t) =fh(t-.c)x(T)dr (2-16)
0

which is the linear system response. The second order output will be

due to the squaring of the first order output. After substituting eqn.

(2-15) in eqn. (2-14), we get the following integral equation involving

the second-order output:

Y2 (t) + CCoh(t-O)L2 [a2 Y (O)3d = 0 (2-17)

Substituting for yl(t) in eqn. (2-17) from eqn. (2-16), we get

Y2 (t) - - h(t-t)L 2 a2  b(T-r1 )h((T-r 2 )
0

21
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-ca cowfht-T A(r-.1 )A ('r

XCTj)WT 2 )dT1 d _2 dT (2-19)

where A is obtained after the Linear operator L 2 has been applied to the

quantities within the parenthesis in eqn. (2-18). When el =£C2 = 0 in

eqn, (2-9), i.e., for the memoryLess nonlinear case, £ C3 h.

Similarly, when we consider the third-order terms in eqn. (2-14)

(which will be due to the second order and first order outputs), we get

the following integral:

(t) + Cfht-T)L [a 3 CO) + 2 a~y r y(-r)]dT = 0 (2-20)

Substituting for yl(t) and y()in eqn. (2-20) and using eqns. (2-16)

Y3(t = - £Jh(t-r)Ea fl(r-Tl Qrr2 fl'-T)

0 0

+ 28 2 £ffhQ-T1 h(T-Oafa-T 2

R(Gar 3 )dax(r)X( 2 )x( 3 )drd r2dclr3 & (2-21)

Higher order outputs can be derived in this bootstrapping manner. We
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now give the form of the kernel functions for the nonlinear system

described by eqn. (2-7).

When n~l in eqn. (2-4), we obtain h I(T1  from eqn. (2-16) as:

h(r)= h(t) = x- 1y (2-22)
-1

where z- denotes the inverse LapLace transform. It is noted thatL1(s

is the characteristic equation of the Linear system.

Setting n=2 in eqn. (2-4) and comparing* it with eqn. (2-19), we

get

h ~ 2elT2 a2 ih-)(j-)iT-~- (2-23)

Simitarty, setting n=3 in eqn. (2-4) and comparing with eqn.

(2-21), we get:

h 3 (T 1 2jrt3 ) - ()aB([-[AT-rf(3T

+2ejh(-jT1 )h(a)f( 2 a)l(r3 .)dordT (2-24)

As mentioned previously, the kernel functions are independent of

the input. An important feature of the kernel functions given in eqn.

(2-23) and (2-24) is that an n-th order kernel can be expressed as a

*In eqn. (2-195, we first let u at-,r, u =t- PU 2  tr and,
therefore, ' tut 2  =(t-u)'-itu U u-9u and

u -Then Ll' 3 1 u T in eqn. (2-23).
T-hli~suis reworked out In h'pedl.
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product of Lower order kernals. This product structure property* holds

for many practical lumped system problems. For example, nonlinear cir-

cuits with polynomial type nonlinearities have such kernel functions.

We will use this property to investigate the convergence properties of

Volterra series for this important class of nonlinear system problems.

2-4. Convergence Properties of Volterra Series

The previous section dealt with the question of finding the kernel

functions from a nonlinear differential equation. The Volterra series

consists of an infinite sum of terms. Clearly, in a practical applica-

tion, this series must be truncated at some finite term. A very natural

question to ask is: How many terms in the series are required to give a

good approximation of the system response? Thus, we must look into the

convergence properties of Volterra series.

The question of convergence of Volterra series was recently exam-

ined by Gilbert [20], and Lesiah £21). Other references on this subject

include Barrett [6,233, Geyer [34), and Ku and Wolf (22). In keeping

with the application-oriented spirit of this dissertation, we first

present the basic convergence theorem from £22) and then derive some new

and more meaningful parameters, related to the linearized system, that

can be used to obtain the approximate error in the truncated series

solution.

*Many authors E8] refer to this as the "separabLe" property of
higher order kernels. *We use the term "product structure" instead,
so as to avoid confusng with separable kernel in linear system
theory, which denotes a different concept.
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Theorem 2-1 (22): Let the n-th order response of the VoLterra series

(2-2) be given by

n

Yn (t) f *fh n (.11 r 2 ".. n) [ x(t-.r i dr. (2-25)

where x(t) is the input function. Then for a bounded forcing function

x~t); i.e., there exists a constant X > 0 such that

Jx(t)I < X for all t (2-26)

we have

jy(t), = I Ey (t), < G _Xn (2-27)
n1l n n~l n

where

Gn 4 o Ih ( T1,,.Tn )d-r . - (2-28)
n 0 0 n

Proof: From the triangLe inequatity, we have

IY~t n1 I 0 y tl(-9

out,

a, n
Iyn(t) I IJhn(r1p ... rn) II x~~t-Tr )dT I
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n

.0 0 p=l P

- xn..". Ihn(Tl"""Tn.)dr 1 -"drn (2-30)
0 0 n

Using eqns. (2-28) and (2-30) with (2-29) gives

0 
00

lywt) I_ I nElYn (t)l -< nlGn xn  (2-31)

This completes the proof.

Equation (2-31) cLearLy emphasizes the role which the input ampLi-

tude plays in the determination of the number of output terms that must

be retained to achieve a desired accuracy. The importance of the input

amplitude in the analysis and synthesis of nonlinear can never be over-

emphasized. The existence of muLtipLe solutions in nonlinear systems is

not rare. Whether the system wiLL exhibit the desired and stable soLu-

tion very often depends on the input amplitude. Thus the input ampLi-

tude pLays an important roLe in the nonLinear system response. Later in

this section we shaLL briefLy discuss the stability and boundedness of

solutions via the VoLterra series method.

Returning to the topic of convergence, it should be clear that eqn.

(2-31) is not of much use in its present form; for it requires the

determination of the n-th order kernel before the bound on the n-th ord-

er response can be found. Even when the kernel is determined, the

evaLuation of G may not be a simpLe task. In an engineering problem

one prefers to have an a priori estimate of the order of the error that

26



is incurred as a result of truncating a series at some fipite term. In

the following paragraphs of this sub-section, we explore the convergence

of lumped systems with a single nonlinear element that is characterized

by the differential equation (2-7). We then investigate the convergence

of lumped systems with multiple nonlinear elements.

2-4.1. Single Nonlinear Element Case:

In this section we study a nonlinear differential equation with

memoryless nonLinearity and determine the bounds on the solution in

terms of the 1 norm of the linear kernel function, and concomitantly

in terms of the poles and residues of the linearized system. The abili-

ty to examine the convergence of the solution series in terms of the

pole-residue values is of great help to the system analyst, because such

information for the linearized system can be easily obtained from many

computer-aided analysis packages. Furthermore, the results derived in

this section give a means of estimating the bound on the next higher

term of the truncated series - something similar to the case of numeri-

cal integration formulae, which give the order of the truncation error

in terms of the step size.

The equation to be examined is for a nonlinear system with memory-

Less nonlinearity with quadratic and cubic terms. We examine the fol-

Lowing differential equation:

Lly(t)3 + a2y 2(t) + a3y 3(t) = x(t) (2-32)

where L is a Linear operator, similar to L1 in eqn. (2-8). Then using

eqns. (2-16), (2-19), and (2-21), we can immediately write the approxi-

mate solution for y(t) as:

27
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y(t) =fh(t-'r)x(OrdT + a ffh(T)h(-ri-r)h (r2 -T)

x)(.r2)d Td2d 2fffffh('r)h(r1 -T)h(i-T)
0

h (r2 -a)h(T 3cJ)x(.rl)x('r)x ( T3Mdr T3dd

2 3flf 1-~(l-~ 2--h( 3 ) Tj dr 2 )a (T3

djT2d3 T+ (2-33)

Now, if the foLLowing conditions hold:

Ix(t)I < X for aLl t (2-34)

and f lh(T)IdT = 6; h(r) = 0, Tr < 0 (2-35)

then the bound on eqn. (2-33) is given by:

Iy(t)I = Y<GX + la263X2+ 2 al2G5 X3

+ la 3 IG
4 x3 + go@ (2-36)

In fact, if higher order terms were considered, t4~ bound on Y wiLt be

given by:
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'Y <Y 1+ Y 2+ Y 3+Y4 + 0* (2-37)

Y 1< GX

Y 2  ja 2IG 
3 x2

Y <- (21a 21 2 7G 5 4 a3IG4)

Y4 SC4a21 + 1a821 2)G 7+ (21a82Ila3 1 + 31a 3 )G 6+ la841 J5 X4

Y i< GL L a kIY iJ , i > 2 (2-38)
k=2 ik -

where

YE Y.Y y (2-39)

Equations (2-38) and (2-39) give a recursive relationship for

determining the bound on the output terms. As shown by the first few

terms, these bounds ultimately depend on the boundedness of the Pnorm

of the kernel function, h 1(T), of the Linearized system and the input,

x(t).

We now Look at an approach to estimate G. For eqn. (2-32), the

transform domain description of an asymptotically stable first order

kernel can be written as*:
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r. R.
H(s) =+E-+ (2-40)

s+P " [(s +ci) +W I

The impulse response is then given by:

-p.t -a.t
h(t) = Frie I +ER.e I sinw.t (2-41)

i j3  3

From eqn. (2-41), we immediately get

tp.t
Jht)J < Ir.e- +Y, IRj e sinwjtl (2-42)

and, therefore,

G =f Ih(T)IdT
0

Irie 1 IdT + IRje T sinwiTldr (2-43)

The first integral in eqn. (2-43) is easily evaluated as follows:

GI = Ire'Pit Idt

*Here we consider the case of Linear system with simpLe poles. The
Linear system, which is asymptoticalLy stabLe, but has muLtipLe ord-
er poLes can be handLed simiLarLy.
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(2-44)
1 *I

We now seek a method of estimating the second integral in eqn. (2-43).

For this we examine a single complex conjugate pole pair and evaluate

the j-th term in the series [303. Let

g.(Q) = R ie sinwjt (2-45)

Then,

T'/w. .rw
cc= f J g .( T) Id T E 6 e -0 w/ ) j

0 0 k=0

1 /to~.

f 3 gj(,r)ld-
=0 w /W (2-46)

Eqn. (2-46) gives a method of evaluating the terms in eqn. (2-43)

that involve complex poles. Thus, eqn. (2-43) can be rewritten as:

G < G1+ 6 2 (2-47)

where G 1ri
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f Igj(C)Idt

and-G2I ; g.C) = R.e sinjT (2-48)
21 -jJl-e ]

Clearly, G 1 is the contribution to G due to the real poles, and G2  is

the contribution due to the complex poles in the linearized system.

Our discussion in this sub-section has dealt with the convergence

of the Volterra series for nonlinear lumped systems with a single

memoryless nonlinearity. The results will be summarized in the follow-

ing theorem, whose proof is included in the appendix.

Theorem 2-2: Consider the equation

L( y(t) + E aiy i (t) = L (d ) . x(t)
t i=2 1dt

where L(p) = pm + b mlpm-1 + .. + bo

L1(p) = pt + colpt-1 + * + co , L < m

and L(p) is assumed to have roots with negative real part. If, for

t < to, x(t) = y(t) = 0, and for t > to, Ix(t)I < X, then y(t), for

t > to, remains bounded by the inequaLity (2-37).

It should be noted that Theorem 2-2 shows how the series converges;

it does not show if the series converges.

The bound on the output, according to eqn. (2-37), uLtimateLy

depends on the bound on the L1 norm of the Linear kernel function. This

can be easily obtained by the method discussed above for finding G. If
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the series converges, these results can be used to determine the number

of terms in the Volterra series that must be retained to get a solution

within a prescribed accuracy; one does not have to first determine the*

kernel functions (except the linear kernel), as per Theorem 2-1, to es-

timate the number of terms that must be kept. Knowing G and X and the

coefficients ai, the bound on each order output can be determined, which

tacitly provides us the information about how many kernels need be

determined to meet a prescribed error criterion.

Our foregoing discussion has dealt with nonlinear systems with

memoryless nonlinearity. The case of memory type nonlinearity can be

treated in a parallel manner, and an inequality similar to eqn. (2-37)

derived. The only difference in the new inequality will be that the t1

norm of the differentiated or integrated first-order kernel function

will be involved. Thus, for example, terms of formf i=-h(Tr)IdT or
~~g dv . ,o

fl[ h(x)djdt will now be involved in determining the bounds on the

various order responses. These terms can again be evaluated easily.

For example, consider the case of a system with simple, real poles.

Then,

h(t) = r " pi > 0 (2-49)
i 1

From (2-49), we get

g =< rI (T)ld = Ih(I)l
0 0

E1 .il (2-50)
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We now consider the case of lumped systems with multiple nonlinear-

ities.

2-4.2 MultipLe Nonlinear Element Case

The case of lumped systems with multiple nonlinear elements is

simiLar-to the case of one nonlinear element. Instead of working with a

single differential equation, we work with a system of differential

equations. In studying the convergence of the Volterra series we again

use the "product structure" property (PS) of the higher order kernel

functions to derive the bounds on the various order outputs in terms of

the z1 norm of the linear kernels. Before proceeding with our discus-

sion of the main topic of this sub-section we point out that most higher

order kernels encountered in nonlinear systems with polynomial non-

linearities have the PS property*. In some cases, a "special" viewpoint

may be required to see this property.

Consider, for example, the system of Fig. 2-3. Van Trees 183 uses

this as an example of a system with non-PS property kernels. His claim

follows from Looking at the second order input-output relationship,

which is:

z(t) = f f hla(1)h la(. 2 ) + h lb(1)hlb(.2)3 •

x (t-. 1 ) x (t- 2 )d-r1 dr 2  (2-51)

*The PS property for cascaded systems is quite apparent from the
general expressions -for their kernel function. See, for example,
t53 to verify this.
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2 I I (t)

hl (t)) Y(t

h l b ( ) 22

Fig. 2-3. A System with "non-ps" kernels.

However, if we view the output of each nonlinear element separately, and

write the system output in terms of these component outputs, then we

find that the kernels of the system of Fig. 2-3 indeed have the PS pro-

perty. This is evident from eqn. (2-51) when we re-write it as:

Z(t) =f f hla (T 1)hla (T 2)X(t-T 1 )X(t-T2 )dTldT 2

+f f hlb (Tl)hlb(T2)x (t-l)X(t- 2)dTldT 2

= z1 (t) + z2(t) (2-52)

Then, the systems relating x(t) to zl(t) and x(t) to z2 (t) have the PS

property. Furthermore, the bound, Z, on z{t) is given by:
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z = Iz(t)I. <z 1 + 11 21 (2-53)

where Z1and Z 2 are the bounds on the component outputs, z 1(t) and

z 2(t), respectively.

We now study the convergence of Lumped nonLinear system by working

with a specific exampLe. Consider the system described by the following

set of equations:

+ y +y + y2 + a 2~ + a3=X(t)

1 2 2 2 3y

y+ ; y 2  y +a y2 + a 3 =O0 (2-54)

Just as for the case of single equation, we apply the inverse operator

to eqns. (2-54) to obtain the integral form of the vector equations:

y (tP i (t-r) h (t-T) a 2  ( ) + a Y 3 (T)]

L2 (t)J 0 h22 (t-r) h 22 (t-)J a 4 2 (T + a5y 3().r

0 2 r-)X('r dtr (2-55)

Now we assume that yl(t) and y2 (t) are made up of various order outputs;

that is,

(1) (2) (3)y1 (t) y 1  (t) + C, t) + Y, t) +

Y2 (t) Y2 y 1 (t) + 2) (t) + Y2 (t) (56

where 43) denotes the j-th order output y1 (t). Substituting eqn.
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(2-56) in eqn. (2-55), and collecting terms of Like order on both sides,

the first two terms are found to be:

[(1) 1 t (t-r)x (OdO

L2 )] f H(tr,) d (2-57)

C t ) 0 h11 1,-k~ 2 1 x ,X x ,2 ) d 2]

where

1 t.) h2(t_
H~t-.r) = [h2 tT 2QT(2-58)

By defining a matrix G as:

6 = F 11  9121 0 t h l ) d fo h 2 ) d( - 9

g 21 g22j -Ih 21 COWIdr fh 22 (T)IdT(-9

we can readily determine the bounds on thie first and second order out-

puts, provided the input x(t) is bounded, as foLLows:

In1  (t0I Y 1  g1 X
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(1) (2-60)
IY'21 ) t)I = Y2  <g 21

l

ly()(t)I- y(2)1 rg2x 2"
(2 1 11
(2) ()2 <6 i (2-61)

1Y2  (t) [I 2) -. 92 2

The above example of a system with multiple nonlinear elements was

deliberately chosen to be simple, and yet we find that the determination

of the bounds on the output is quite involved. This example neverthe-

Less illustrates how the bounds on the various order outputs are related

to the matrix involving the 1 norm of the linear kernel functions. We

summarize the results by the following theorem.

Theorem 2-3: Consider the system:

d y(t) + Fly(t)= x(t)
-dt t)=xt

where

11 (P) 112 (p) • ... Z ln (P)7

L(p) =

,nl(P ,n2( .. nn(P

Y(t) [Y(t) y2 (t) ... Yn(t)]T
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x (t ( xt) x2 (t) ... xn t)] T

a1y1  Cl) y2 +a(1 ) y3 +8y,2 y1 +3 >1

f (y a(2) y2 +a(2) y3+
2 y2  82 y2 +3 y2

FEyCt)]=-

fC) 8na(n) y2 +a 3+
2 8 3 n~.

with each L. (p) has roots with negative reaL parts. If, for t < to,

x(t) = y(t) = 0, and for t > to, max Ix.(I (0 . X, then Y Elyl(t)I

1Y2(t)l ... ty n t)I)', for t > to, remains bounded by the foLLowing mne-

quaLity:

_ 1 - 2n

=bound on the i-th order output vector

< <XGV

Y. < G?.

where
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y (t) ly(jt (0 bound on the l-th order output, y~ (t).
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i-th element of v is 1 if

v = X 1 1 ... 0 ... 1); xi(t) is non-zero; otherwise,

it is zero.

Proof: The proof for the above theorem is similar to that for Theorem

2-2, which is included in the appendix.

Theorem 2-3 gives recursive relationship for determining the bounds

on the output series of a class of Lumped nonlinear systems. As shown

by the example, prior to the theorem, these bounds ultimately depend on

the integrable property of the linear kernel functions, h.. (T). An es-

timate of the bound of these kernel functions can be obtained by the

method outlined in section 2-4.1. The theorem is useful in determining

the highest order of kernel functions that are needed to obtain the

solution within a prescribed accuracy. Only a knowledge of the G matrix

and the bound on the input, X, are required for this task.

It should be pointed out that the basic idea in the above theorem

can be extended to nonlinear systems with multiple independent and

dependent (coupled), memoryless or memory-type, nonlinear elements.

However, the notation and algebra involved becomes so complicated that

it is difficult to put it as a general theorem. One can nevertheless

apply the idea of estimating the higher order responses in terms of the

bounds on the Z1 norm of the linear kernel functions and the inputs for

specific system problems at hand.
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2-4.3. Stability and Boundedness of Solutions.

Much of the foregoing discussion in this section has dealt with the

question of how the Volterra series solution converges, but has ignored

the question of whether, if at all, the solution for a system converges.

The question of the uniqueness of the solution has also not been ad-

dressed.thus far. The answers to these Later questions are directly re-

lated to the stability and boundedness of the solution. By determining

the condition on X, in terms of the LI norm of the linear kernel func-

tion, for which the Volterra series converges, we can get much insight

into the stability and boundedness of a solution. Our discussion in

this sub-section wiLl look into the determination of the constraint on X

to get a converging series. Theorem 2-2 will be most useful for such a

task.

Much of the theory on the uniqueness and boundedness of solutions

of ordinary nonlinear differential equations has been covered in

[15,21,353. In [153 the nonlinear differential equation is converted to

the Volterra integral equation (which is an equivalent representation in

integral form of eqn. (2-7)), and using the Picard iteration approach,

conditions on the nonlinearity, the linear kernel function, and the

boundedness of the input, are derived to prove convergence and unique-

ness. It is shown that if the forcing function is bounded, the Linear

kernel is square integrable, and the nonlinearity satisfies the Lip-

schitz condition, then starting from any set of initial conditions at

to, (2-7) has a unique solution for any finite range of time t. The

proof fails if either to - or t * . Since it has been shown [19]

that the sequence of iterates, obtained from the iteration process,

42



correspond to the partial sums of the Volterra series, it follows that

the above criterion for uniqueness and boundedness can also be applied

when the Volterra series method is used. However, if one is using the

Volterra series method, it is only natural to have some criterion which

establishes a direct relationship between the convergence of the series

and the stability and boundedness of the solutions. Most authors

[20,21] have established conditions, similar to those stated above, to

prove convergence and uniqueness of the Volterra series in a finite time

interval EO,T]; the case of [0,-3, or [--,-3 has not been addressed.

The latter problem has not been adequately dealt with in the literature

and is in fact a difficult problem. The only known work in this area

was done by Barrett [23). We use results from [23) to a specific equa-

tion to show the possibility of determining the stability and bounded-

ness via the Volterra series method.

Consider the following second-order nonlinear differential equation

with a cubic nonlinearity:

+ aY + ay + cy3 = x(t) (2-61)

Then using theorem 2-2, we can immediately write the bound on the solu-

tion y(t) as:

Iy(t)j = Y < GX + IIG 4X3 + ... (2-62)

where
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G ioh(T)Jdt ; h(t) L-1  (2-6

0 +a is + a0J(-3

X max Ix(t)l

Re-writing (2-62) as:

Y = f(x) = GX + HJG 4X3 + .., (2-64)

It'should be evident that if the series for f(X) in eqn. (2-64) con-

verges for some X < X., then the Volterra series solution for eqn.

(2-61) also converges for max Ix(t)I < X, since f(X) dominates theO)<t<- c"

Volterra series term by trm. We now seek a nonlinear algebraic equa-

tion for which the series f(X) is a solution. The roots of this alge-

braic equation along with the constraints on X for which the series is

convergent will give more insight into the solution of eqn. (2-61). AL,

this will become evident as we proceed along.

It can be shown that the nonlinear algebraic equation* for which

f(X) is a solution is:

Y - IIGY3 = GX (265)

Being a cubic, eqn. (2-65) will have three solutions for Y in terms of

X. This shown in Fig. 2-4, where

*After the inverse operator is applied to eqn. (2-61), there results
a striking resemblance with eqn. (2-65).
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X c 2TI (3G) (2-66)

1
Y = (2-67)c 3 c IG

-cYC c (X c'tYc C

-xx
C C

(-X ,- ) -YC

Fig. 2-4. Roots of the Nonlinear Algebraic Equation

Figure 2-4 provides some interesting insight into the behavior of the

solutions of eqn. (2-65), and concomitantly into the solutions of eqn.

(2-61). First, when X * 0, then Y = GX - which implies a "linear sys-

tem" operation. When X < XC, all three solutions of eqn. (2-65) are

given by*:

Y = 3XcG sin sin 1  (2-68)

The range of convergence for the solution Y in eqn. (2-68) is that

*If sin is given its principal vaLue, the relation Y = f(X)
resuLts.
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lXI < Xc, where Xc is defined in terms of G and €. Since the algebraic

equation (2-64) dominates the Volterra series solution to eqn. (2-61)

term by term, it follows that the series for eqn. (2-61) will also con-

verge provided lx(t)l < X for all t, and also remain bounded by the

inequality (2-62).

The above example illustrates an interesting method for arriving at

the constraint on the input function in order to insure that the Volter-

ra series solution converges. Instead of working with the functional

-series, we work with a nonlinear algebraic equation. The behavior of

the roots of the algebraic equation in a given region then provides in-

sight into the convergence of Volterra series.

The above approach will also show the cases in which the Volterra

series method will not yield meaningful results. ALthough not proven

yet, it appears that if the linearized system is not asymptotically

stable, then the VoLterra series solution may not converge. This con-

jecture can be seen when we consider the effect of a simple pole which

is very close to the jw-axis. 'This pole will predominantly effect the

t1 norm of the Linear kernel function. If Xc has G in the denominator,

as in the above illustration, it should be clear that as G -, X * 0.c

Thus, the bound on the input for which the series converges will go to

zero as the pole moves very close to the jw-axis.
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CHAPTER 3

MULTIPLE-NODE, MULTIPLE-NONLINEARITY CIRCUIT ANALYSIS

3-1. Introduction

Nonlinear systems that admit a Volterra series description are com-

pletely characterized by their nonlinear impulse response functions or

the generalized transfer functions, which are the multi-dimensional

transforms of the nonlinear impulse response functions. Thus, any

analysis of nonlinear systems via the Volterra series method will entail

the determination of either one of these functions.

Previous works E7,10,12,13,14,43] for determining the generalized

transfer functions have relied on the "harmonic input" method or the

"nonlinear current source" method. The harmonic input method involves

the use of exponential functions as inputs, equating terms of Like order

on both sides of the system equation(s), and then determining the

transfer functions. The nonlinear current source method involves the

solving of the nonlinear differential equation(s) by repeatedly solving

a linear differential equation with nonlinear excitation, again assuming

harmonic inputs. Both these methods give a recursive relationship

between an nth order transfer function and up to the (n-1)-order

transfer functions. Although both methods are mathematically correct

and yield the correct generalized transfer functions for a system, they

both have a common "drawback": there is no direct relationship between

the approach used and the definition of the generalized transfer func-

tions.
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Since the generalized transfer functions are transforms of the im-

pulse response functions, it only stands to reason that the determina-

tion of these transfer functions should somehow entail the use of an im-

pulse function as an input to the system - just as in the case of linear

systems. Based on this intuitive approach and multi-dimensional

transform theory, we develop a new method for the determination of gen-

eralized transfer functions which does not involve the use of exponen-

tial functions as inputs.

As one would expect, the results obtained from the approach

developed here coincide with those obtained previously. However, it is

believed that this new approach has some advantages: first, the approach

relies on fundamental definitions of multi-variable transforms, and is

therefore more rigorous than the "heuristic" frequency probing methods;

secondly, the morass of algebra involved in the harmonic input method is

avoided; third, the new approach is more intuitive and provides a direct

link to the work done elsewhere [5] on nonlinear systems.

In this section, we develop this new approach gradually. In sec-

tion 3-2 the multi-dimensional transform theory is introduced, along

with the application of the theory to specific examples which will be

subsequently used in deriving the generalized transfer functions. In

section 3-3 the generalized transfer functions for an r-th order non-

linear differential equation are obtained. Section 3-4 is devoted to

the determination of the nonlinear transfer functions of a general

multiple-node, multiple-nonlinearity circuit with a single input. The

j case of multiple input sources is treated in section 3-5. A specific

8 . .



nonLinear circuit exampLe is presented in section 3-6.

3-2. Multi-dimensionaL Transforms

The LapLace transform pair of a one-dimensionaL function, f(t), is:

F(s) = ff(t)e st dt (3-1)

and

f(t) =C21 + OF(s)e stds (3-2)

For a multi-variabLe function, f(t 1,t 2,*"-tn)P the corresponding

muLti-dimensional transform [243 is:

F~s 's~ ...Psn ff e..ff(t I t 2 .. t )exp(-s I t1....- s t n)dtlf**dtn3(3-3)

F(SPS2 P..PS~ =n-foLd

and

f(ti~~~n = ff.efF(si....,S )exp(Sit +00*+s t )dsi..*dsn (3-4)
(2wj) n-foLd

Before proceeding further, we make the foLLowing notational definitions:

and
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f(t lt 2,...,tn) = -1[F(SlS 2,...Sn)l (3-7)

Whether we use Fourier transform or Laplace transform in eqns.

(3-3) and (3-4) depends on the contours of integration and values of

SlS2,...,Sn. The importance of the region of convergence when dealing

with unstable and non-causal linear systems is well known. Here we as-

sume that the systems under consideration are causal; that is, the Vol-

terra kernels hn(tlt 2,...,tn) = 0, for tl t2,...,tn < 0. Also, in gen-

eral, we are concerned with functions (or generalized functions) whose

region of convergence includes the imaginary axis in each variable, so

that the Fourier transform is included in our definitions.

It should also be noted that most of the properties of the one-

dimensional transform (Linear case) carry over to the multi-dimensional

case. The validity of this statement can be checked elsewhere [53.

It is often desirable to express the multi-variable function,

f(tI t2,...,tn), as a simple function of time, f(t), and vice versa. If

all t'i are restricted to be identical so that t = t1 = t2 = ." 
= tn ,

then f(t lt 2,...,tn) becomes f(t).. Thus, in the two variable case, f(t)

can be obtained from f(tlt 2) by evaluating f(tlt 2) along the 45* Line

t 1 = t2. Similarly, if we plot f(tlt 2,t3) in a three-dimensional

space, then, to obtain f(t), we are only interested in f(t ,t2,t3) along

the Line t1 = t2 = t . The idea of converting a nonlinear function of

one variable t into a product of linear multi-variable functions will be

used repeatedly in the sequel. One must, however, bear in mind that the

ultimate goal is to obtain the solution of the differential equation as

a function of time, t, and that the introduction of tlt 2, etc. are

merely for mathematical manipulations.
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We now apply multi-dimensional transforms to some specific cases

which will be subsequentLy used in sections (3-3) and (3-4).

3-2.1 VoLterra Series: The VoLterra series relates the system input x(t)

to the system y(t) as foLLows*:

40 n
y(t) 'r 2f .. hn(ri.....,r ) fl x~t-r. i)dr.

nln-foLd n~.i 1

, 1 y t)(3-8)

where

n
Y(t) =f.fh,(ri,. .,rn) fl x(t-r.i)dt.i (3-9)

n-fold i=1 1 1

Introducing dummy variables t 1"t2"*"Ptn in eqn. (3-9) we can write

(t)M as:

Yn () Yn It l*2P' O. n )It 1 t2=..t t

n
f ..J h nr 1  n. ) rj x(t1 -r1 )dri (3-10)
n-fold i=1

Taking the n-dimensionaL transforms of eqn. (3-10), we get:

*UnLess otherwie stated, all Limits of integration are between 0

and in our discussion here.
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Yn (S ,...sn) = ZEy nCt ,...,tn ))

refn -s.t.
= JJ'..J h nC(r1-PT 2,. ... ) rix(t.i- T.)e ' 1 dT dt.i (3-li)
2n-foLdn1111

Defining t n-Tn a n, t n-tn a, anahreoe

tn an +Tn ,tn-i on-i+ n-1 . 1,l 1 +T1'

do dtn , do n1 d -o.,o,= dt V Substituting these quantities

in eqn. (3-il) and performing the 2n-foLd integrations with respect to

dT.i and dao. we get

n
Yni 1'n~ H nCs ... ,s n) II X(s.) (3-12)

and therefore the transform domain description of eqn. (3-8) becomes:

In n
Ysl " n = FH(sli"**sn) 7I XUS.) (3-13)

where X(s) is the transform of x(t). If the input x(t) is a delta func-

tion, then eqns. (3-12) and (3-13) reduce, respectively, to:

yn (S ll"'n) n 1s l2'-.' n) (3-14)

and

=~l..s F.Hn(si#*..#Sn) (3-15)
n=l

Equations (3-12) through (3-14) will be used repeatedLy in section

(3-3).
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3-2.2 NonLinear Terms. The characteristics of nonlinear elements en-

countered in many nonlinear dynamical systems can be represented over

any finite range by a polynomial. This gives rise to nonlinear dif-

ferential equations with polynomial type nonlinear terms. When such

elements are used in a system, the equilibrium equations contain in-

tegrals and derivatives of the polynomials. In this section we apply

multi-dimensional transforms to these nonlinear terms to obtain general

forms of the transform-domain description of these terms. The details

of some of these derivations are given in Appendix B.

2
y (t) Term:

y2 (t) = y(t 1 )Y(t 2 )1 tl=t2=t (3-16)

Y(sls 2) = i[y 2 (t)] =ffy(t 1)y(t 2 )e 2 dt1dt 2

= Y(s 1 )Y(s 2 ) (3-17)

y3 (t) Term:

y3 (t) Y(t)Y(t 2 )Y(t 3 )1 =t (3-18)

1 3
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Y(s1,s 2 ' s3) LEY3 (t)) = fffy(t1 )Y(t 2)y(t 3)e- 1- 12t2- S3 t3dt dt 2dt 3

=Y(s 1)Ms 2)Ms 3  (3-19)

y(t) Term:

n
y n(t) fy(t.) t. =t (3-20)

and

n
=~ le-'s CYnt)] I Y(s.) (3-21)

d 2
dtyt) Term:

d 2 d -ts

Y(s11 2  dE. 2t) (03 d )e -S1 1 - 2 t2dt 1dt2

= (s+ S 2)Ms ls 2)

z (s + S 2)Ms 1)Ms 2) (3-22)
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d n
&t(t) Term:

d n dn

1 np=1 p

n dt
Y(s1,s I-, '(t .. Pt 3

fy n(t)dt Term:

fy n tdt =f n (,ri-t 2-tr. .Ont)dt (3-25)

Letting Tr. - t = ti, and taking the transform of eqn. (3-25), we get

Y(S iPs2**jSn) Y Yn(si1,.."rs.)Ms I+S 2+...+s n (3-26)

= +Si +:... * l Y (sYs i (3-27)

The general forms in eqns. (3-21), (3-24) and (3-27) wiLt be used in

sections (3-3) and (3-4). The saLient feature in each of these equa-

tions is how an nth degree poLynomiaL function in the time-domain is

represented by the nth-order product of the transform of the function in

the transform domain. It is this product structure which, analogous to

the case of Linear system anaLysis, makes the anaLysis of nontinear sys-
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tems easier via the transform-domain approach.

3-3. A Nonlinear Differential Equation:

In this section, we present a method, based on applying the multi-

dimensional transforms to nonlinear differential equations, to determine

the response of a nonLinear system with a functional power series type

of nonlinearity. The nonlinear differential equation considered is the

following:

N
L1 Ey(t)) + L21 Ea nn (t)) = x(t) (3-28)

n=2

where x(t) and y(t) are system input and output, respectively, LI  is a

linear differential operator:

R dr
LI[°] = Z-'" (3-29)

r=Odt

and L2 ist , or a constant, or a sum of these operators. It should

be noted that the Linear operator, L2, operates on a polynomial function

of y(t).

We now present an approach whereby the nonlinear differential equa-

tion (3-28) is solved by a bootstrapping operation by first dissolving

it into a set of linear differentiaL equations with nonlinear inputs.

Multidimensional transforms are then applied to these new equations to

obtain the VoLterra series solution.

There are many different methods of rendering a nonlinear differen-

tial equation into a set of Linear differential equation with nonlinear

inputs. We use the approach outLined in C14,173.
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Assume that the input in eqn. (3-28) is of the form

x(t) = ev(t) (3-30)

The dummy variable c helps to keep track of the order of the terms: a

term with coefficient cn signifies an nth order term. This can be seen

easily by substituting eqn. (3-30) in eqn. (3-9), which yields:

n
yn(t) = n f .. hn('',...,Tn) l v(t-T )dT (3-31)

Let us assume that r(t) is the response to the input v(t) in eqn (3-28).

Then, according to the Volterra series expansion, as per eqn. (3-8) and

(3-9), the n-th order response is:

n
r ... h (.El...,Tn ) I v(t-i.)dt. (3-32)

n=fold i=1

Comparing (3-32) and (3-31), we obtain the following relationships:

(t)( = ) n r n (t) (3-33)

and therefore, as per eqn. (3-8),

y(t) y n (t) = F£nrn(t) (3-34)
n= n

We now have two differential equations which relate r(t) and v(t).

First, equation (3-28) can be re-written as:
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N
L1Er(t)) + L E --anrn (0) = v(t) (3-35)

n=2

second, after substituting eqn. (3-34) into (3-28), we get:

N CO
L1E 4 nrn(t)3 + L2EI (a. Fnr (t)) 3 = Cv(t) (3-36)

n=1 j=2 n1 n

Thus in order to soLve eqn. (3-28), we can soLve eqn. (3-36) for rn (t),

n = 1,2,... and substitute in eqn. (3-34) to solve for y(t) after set-

ting c = 1. Setting e = 1 impLies that x(t) = v(t), and therefore y(t)

= r(t) =r (t). The introduction of e is a mathematical artifice which
n

heLps to equate coefficients of cn on both sides of eqn. (3-36), thereby

yielding linear differential equations (involving successively higher

order outputs) with nonlinear inputs. This is similar to the perturba-

tion method, [17,293.

To solve for r1 (t), the Linear system response, we equate coeffi-

cients of on both sides of eqn. (3-36), thus yielding the foLLowing

equation:

L1 (r 1 (t)] = v(t) (3-37)

SimiLarLy we equate coefficients of 2, c3, c4, c5, and so on, on both

sides of eqn. (3-36) to obtain the following equations:

L Er (03 + L2[a2r2(t)3 = 0 (3-38)

LIr(3+ L C2a rl tr (t) + a 3(t)] 0 (3-39)

1 3 2 21 2 3 1
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L Er (03) + L [a (2r Wtr3 (t) + r2 (t ar2 t

+ a r1 4t)3 = 0 (3-40)

LEr (t)3 +L 12a r (tr (t) + a (3r2(tOr (t) +
15 2 2 1 4 3 1 3

3r W 2 W)+ 4a r 3tWr (t) + a r1 5t03 = 0 (3-41)

To solve for the generalized transfer functions of eqn. (3-35), we take

the 1-dlimensional transform of eqn. (3-37) and obtain:

L 1(s 1)R 1(s 1) = V(s 1) (3-42)

If v(t) = a(t), then V(s 1) 1, and therefore, according to eqn. (3-14),

we have

R (s) H H(s1)=L( 1  (3-43)

To solve for the second-order transfer functions,. H 2(s Vs 2 ), we perform

a 2-dimensional transform of eqn. (3-38) to obtain

L 1(s 1 +s2)R 2(s1,s2 ) + a 2L 2 (SI+S 2 ).R 1(s 1)R 1(s 2) 0 (3-44)

Notice that we have used eqn. (3-21) to transform the r 2(t) term. Using1

(3-14) and (3-43) in eqn. (3-44), we obtain
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R (s H (s ~a 2L 2(s 1+S )H C s 1)H 1Cs 2)3-5
R2CS1 2) = 2 s, 2 2 1 2 1 ( 1 1 2

Similarly, taking a 3-dimensional transform of eqn. (3-39), we obtain

L1Cs1 +s 2 +s3)R 3 s s2,s3 ) + L 2 (s1 +s 2)2a 2R 1(s 1)R 2(s 2 S3)I

+ a3R 1Cs 1)R C s 2)R 1(s 3)) =0 (3-46)

Again, using eqns. (3-43), (3-45), and (3-14), we get

R3 (sls 2,s3  = H 3(s ,s2,s3) = - L 2(s1 +s 2 +S3)[2a 2H 1 (s1 )H 2 (S 20s3)

+ a 3H 1 (S )H 1 (s 2)H 1 (s 3 )ML 1 (s1+ S3)(-7

In a simiLar manner, we can derive by inspection:

4
H4(s ls 2,s3,s4) L 2 ( si )[a 2 (2H 1 (s 1 )H 3 (S 2,sS 4

+ H2(s VS2 )H 2(s 3 s4) + 3a 3H 1 (s 1)H 1(s 2)H 2(s 3 'S4

4 4
+ a4  H H Cs )IML 1 s (3-48)

and

5
H5(s,s2,s3,s4,s5) Y S2  i s)12a 2H I(S I)H 4(S ls3 ls4 ls5)
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+ 3a3 (H (s )H(s 2)H3 (s3,s4,s5)

+ H1 (s1 )H2 (s2,s3 ))H2(s4,s5) )

5 5
+ 4a4H1 (S1 )H1 (s 2 )H1 (s 3 )H2 (s 4 ,s 5 )+a5 il H1 (si)3/L1 ( s i)(3-49)

The overbars in eqn. (3-47) to (3-49) represents symmetrization

operation, which is an averaging operation. In general, the generalized

transfer functions are not symmetrical in their arguments; that is,

H2 (sls 2) may not be equal to H2 (s2,s1 ). The symmetrization operation

on an unsymmetrical system is performed by summing each of the nth order

transfer function over all permutations of its arguments and dividing by

the number of components in the sum.

The use of symmetric transfer functions is not merely for notation-

al convenience, but is necessitated by the method we use for introducing

the parameters tlt 2,..., before taking the transforms. To illustrate

this, we note that v1 (t)v2(t) can be written as vl(tl)v 2 (t2,t3),

vl(t 2)v2 (tlt 3 ), or v1 (t3)v2 (tlt 2). The first term has transform:

V1 (sl)V 2 (s2,s3); the second term has: Vl(s 2)V2 (sl,s3 ); and the third has

transform: V1 (s3 )V2 (SlS 2 ). When V2 (0,') is not symmetrical in its ar-

guments, each transformed quantity above will yield a different value.

Thus, it becomes necessary to use symmetric transfer functions when per-

forming numerical computations to obtain the system response. It can be

shown that the response is unchanged when symmetrized transfer functions

are used. For example, expressing

1
Vl(t)v 2 (t) I I (V(tI)v2 (t2,t3) + VI(t 2)v2 (tlt 3) + V1 (t3)v2(tt 2)3,
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and recalling that t1 = t2 = t3 = t, does not change the contribution

due to v1(t)v2 (t) in the system response. In the remaining part of this

report we will assume the generalized transfer functions to be symmetric

in their arguments.

To conclude this sub-section, we summarize the approach for obtain-

ing the generalized transfer functions of a nonlinear system and also

comment on the important ramification of the method. By introducing a

dummy variable in the nonlinear differential equation characterizing the

system, a set of differential equations of the following form was ob-

tained:

Llrn(03 + f(_ 1 (t)) = 0, n = 2,3,... (3-50)

where L is the linear system operator and f(') is a nonLinear function

of rn_1(t), rn- 2(t),...,rI(t). r1 (t) is the first-order response, which

is simply the response of the linear system. The relationship in eqn.

(3-50) is clearly a recursive one, and can be used to solve for r (t)n

in terms of rn-1l(t), rn- 2 (t), etc. This is done by taking the n-

dimensional transform of eqn. (3-50) to solve for Rn(sl ,..,sn), which

is identically the nth-order transfer function when the input v(t) is an

impulse function. The transform of f(.) is done by inspection with the

help of the results of section (3-2). The n-dimensional transform of

Lr n(t) is shown to be L(sl+S2+...+sn)Rn(s1,S2,...,sn). With all this

information, eqn. (3-50) is easiLy soLved for the generalized transfer

functions.

Much of the discussion above has been concerned with the

transform-domain description of the nonlinear system. It should be
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pointed out that the form of eqns. (3-37) to (3-41) is quite suitable

for obtaining the time domain kernels of the system. By defining an

operator Lll , we can easily solve for hi(-1). Knowing hl(T1) , we can

successively solve for h2 (T 1 ,r 2 ), h3 (r 1 , 2 , T3), etc., yielding*:

hl1( t 1)  =- K QtI )  (3-51)

h2 (T;tlt 2 ) = a2fK(T)hI (t 1 -T)h I (t 2 - )dT (3-52)

h3 (;tlt 2 ,t 3 ) = fK(T)Ea 3 hI (t 1 -r)h (t 2 -T)h i (t 3 -T)

+ 2a 2 h1 (t 1 -)h 2 (T1 -r;t 2 ,t 3 ))dr (3-53)

h4 (t;t 1 ,t 2,t 3 ,t 4 ) - fK(T)Ea 2 (2h I (t 1 -)h 3 (r 1 -r;t 2 ,t 3 ,t 4)

+ h2 (T 2 -r;tlt 2 )h 2 (T3 -T;t 3,t 4 )) +

3a 3 hI (t1-- h1 (t 2 -r)h2 (T4 -;t 3 ,t 4 )

4
+ a4 11 h (ti-)0dr (3-54)

i =1

with

K (t) 1/L 1 (s)3] (3-55)

The fifth-order kernel can also be written by inspection of eqn. (3-41).,

*Here we have assumed L to be a "constant" muLtipLication operator,
thus giving a poLynomlai type memoryless nonlinearity.
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However, for the sake of space, we do not write it here. We note here

that there is a one-to-one correspondence of terms between the time-

domain and the transform-domain description of the kernels as presented

above. Thus, knowing the transform-domain functions, the time-domain

kernels can be obtained directly using the above equations. The pro-

cedure must start from the first order kernel and proceed successively

upwards to determine the second-order, third-order,...,n-th order ker-

nels.

3-4. Multiple-Node Multiple-NonLinearitt Circuit Analysis

Many analysis and design problems in circuits and systems involve

one or at most a few nonlinear elements in an otherwise linear time-

invariant circuit or system. When a single nonlinear element is

present, the differential equation (3-28) and the material of section

(3-2) will be adequate for analyzing the nonlinear circuit. For, in

such a case, the linear circuit can be characterized by a convolution

kernel (via the Thevenin or Norton Theorems) to give the overall Volter-

ra integral equation [153, whiCh can also be cast in a differential

equation form, similar to eqn. (3-28).

However, when multiple nonlinear elements are imbedded in an other-

wise linear time-invariant circuit, the analysis entails the solution of

a system of nonlinear differentiaL equations. The approach developed in

section (3-2) for the scalar case is still applicable, but must be ex-

tended to solve the system of nonlinear differential equations.

The number of equations to be solved depends on the number and the

type of nonlinear elements considered. When only independent type non-

linear elements are considered, the number of equations is less than or

t1
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equal to the number of nonlinear elements (assuming that the output is

across one of the nonlinear elements; otherwise, an extra equation re-

lating the nonlinear element voltages (currents) and the output voltage

(current) is needed to solve for the output). The nonlinear differen-

tial equations in such a case is again derived by obtaining the Thevenin

(Norton) equivalent circuit (for the linear part of the nonlinear cir-

cuit) at each of the ports at which the nonlinear elements are present.

When dependent type nonlinear elements are also allowed, the analysis

becomes more complicated; for, in such a case, the controlling vari-

ables, which may be across a linear element, must be solved for and sub-

stituted in the differential equation for the nonlinear element.

Previous works [7,10,143 for determining the generalized voltage

ratio transfer functions of lumped nonlinear circuits have applied the

harmonic input method, mentioned previously in section 3-2, to the nodal

analysis. [133 introduces the application of harmonic input method to

hybrid analysis. The Latter approach is more general in that it allows

for both current- and voltage-controlled nonlinear elements.

Our discussion in this section for solving multiple-node,

multiple-nonlinearity circuits will be centered around the application

of multi-dimensional transforms to a cutset type analysis. Thus, we

will be solving for the generalized voltage ratio transfer functions.

As we proceed with our discussion, it will become apparent that a cutset

analysis approach is the most naturaL way of solving for the generalized

voltage-ratio transfer functions. We now develop the procedure.

The first step in the analysis is to represent each nonlinear ele-

ment by a poLynomiaL expansion. Thus., in the distortion anaLysis of
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transistor amplifiers [7,36], the exponential type controLLed sources in

the Ebers-1oLl model are first represented by a TayLor series expansion

of the function about the quiescent point, thereby yielding a polynomiaL

in terms of the incremental variables. The types of nonlinear elements,

and their series representation, that are commonLy encountered are:

1. No memory, independent nonlinearity (Nonlinear Resistor)

a j
i = F(v) = a (3-56)

j=1 3

2. No memory, dependent nonlinearity

i = G(u,v) = E ajk -a00 0 (3-57)
j=Ok=O "

3. Capacitive, independent nonLinearity

S= 1Q (v)- F a v (3-58)

4. Inductive, independent nonlinearity

i - J,(v)dt = Ij a vidt (3-59)

where

i incremental current through the eLement

v ; incremental controlling voltage
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u incremental controlling voltage

The general procedure employed to solve for the nonlinear transfer

functions of a single-input, single-output nonlinear circuit using the

cutset analysis approach is illustrated in Fig. 3-1 by considering each

of the four nonlinear element types mentioned above.

Consider the nonlinear circuit N, shown in Fig. 3-1(a), containing

a nonlinear resistor, a nonlinear dependent source, a nonlinear capaci-

tor, and a nonlinear inductor, where each nonlinear element is voltage

controlled. The procedure begins by identifying all the nonlinear ele-

ments, as shown in Fig. 3-1(b). We note that the four nonlinear ele-

ments depend on six voltages. The next step is to lump the linear parts

of the nonlinear elements with the existing Linear network to form the

augmented linear network. The square, cubic, quartic, etc. terms of the

nonlinearity are treated as nonlinear current sources, indicated by i ,

meaning the nth order current source at port k. Since the dependent

source, g(v5,v6), depends on voLtages v5 and v6, we also extract these

as ports. Thus, altogether we end up with an 8-port linear network, as

shown in Fig. 3-1(c).

The output variables to be found are the voltages at these eight

ports. The augmented Linear network is denoted by N' in Fig. 3-1(c).

To solve for the voltage vector v = Cv1 v2 v3 ... v83, we immediately

recognize that the branches across these voltage variables must be

selected as part of the tree 1293. Clearly, some of the other branches

in the augmented Linear network may also appear as part of the tree.

These will then appear as voltage variables in the cutset equations for

the augmented linear network. Since there is no need for these addi-
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Figure 3-1. Steps in Nonlinear Circuit Analysis

using Volterra Series.
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tional variables, we can reduce the dimensionality of our equations by a

systematic elimination of these unwanted variables. In the case under

consideration, we should be Left with only the vector v = [v1 v2 ... v8

as the unknown vector. Each of these 8 ports will have a set of

transfer functions of order 1 to n associated with it. Our task here is

to solve for these transfer functions.

At this point, we make the following general notational defini-

tions:

H 1  (s

Hk(sl...-,sk)

,kSlk 36 k

H=sl. (3-60)

where

H3 -kth order nonLinear transfer function from the input to the jth
k

port; m = 8 in our example here.

v(t) = EVl(t) v2 (t) ... v(t)T (3-61)

where vi - voltage at the ith port

The cutset equations for the m-port nonlinear network can be writ-

ten as:
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Y(p)v + F(v) + G(y v) + p + !(v) =

IV /Z (p))]1 0 0 ... 0]T (3-62)

where

d
p differential operator,

Y(p) Reduced admittance matrix for the p-port. augmented Linear

network

F(v) vector composed of all non1 inear currents through the zero

memory independent nonlinearity

G(u,v) vector composed of all nonlinear currents through the zero

memory dependent nonlinearities

Q(v) vector composed of all nonlinear currents through the non-

linear capacitive nonlinearities

.jLv) vector composed of all nonlinear currents through the non-

linear inductive elements.

z (p) a source impedance

Since the linear parts of the functions F(.), G(.), Q(.), and #(.) in

eqn. (3-56) through (3-59) have been lumped together with the linear

part of the network, the general form of these functions will be as fol-

Lows:
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z 1v = + z3 Cv) + 4 ( V) (3-63)

where

S2(v) is a quadratic function of v

Z 3(v) is a cubic function of v3-_

Z 4(v) is a quartic function of v

Z(o) being ( (), G(), Q(o), or (*). Thus, eqn. (3-62) can be re-

written as:

v (t)

0

0

Y(p)v (t) ,k > 2 (3-64)
.g.

0

where 4 (t) denotes vectors of 2nd and higher order current sources due

to F(v), G(uv), pQ(v), and po(v). The mathematicaL artifice used in

section (3-2) couLd have been applied here also to obtain the form of

all the nonlinear current source terms, i4(t). For the sake of brevity,

we will not use that approach here, but simply use the results of sec-

tion (3-2) to identify the different order current sources due to dif-

ferent nonlinearities. These are summarized in Table 3-1, where vi (t)

denotes the ith order response voltage v(t), which control the nonLinear

element characteristics.
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TabLe 3-1. Nonlinear Current Sources in multiple-node, multiple-

nonlinearity circuit analysis.

Nonlinear Resistor, F( v):

k = 2: a2Iv
1 ]2

k = 3: 2a2Iv
1v2]+a3Iv

1]3

k = 4: a2 12v1 v +(v 2) 2+3a3  1 v 22+a 4 IVl]4

Nonlinear Dependent Nonlinearity G(uv):

k = 2: a20 [u13
2 + a02 Evl) 2 + al1 ulvl

k 3: a3 0 u 1 33 + a03IV 13 + a21 [u112v1 + a1 2u 1v 12 + 2a20u1u +
2a0 2v1 v

2  1v2 + u2v1v+ allEu uu l

k = 4: a4 0 u1 34  + a04IV13 4  + a13U1 [v1 3  + a2 2[u112Iv1 
2 +

a2 1 (2u
1u3 + Eu2)2) + a11 (u

3v 1 + U1 v3 + U2v2 + a02(2vlv3 +

Iv2 2 ) + 3a3 0 u112v2 + 3a03 IV132v2 + a21 (u1 3v2 +

2u1u2v1) + a 1 2 (u 2 Iv1 32 + 2u 1v1v2 )

Nonlinear Capacitive Nonlinearity pQ(v):

k = 2: a2 PEv 1
2

k = 3: 2a2P[v
1v23+a3 pEvl

1 33

k m 4: a2 p(2vlv 3 +v 2 32 )+3a3PEV 1 32 v2 +a4ptv 1 34
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TabLe 3-1 (contd.)

Nonlinear Inductive Nonhinearity CL/pPI*v)

k 2: -Cv 1J
p

3: 22 1 2 a 13
p p

a2v1 v E 2 2  3a83 1l2 2 a4J

p-vv l p :C Iv+p Zl
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We observe that the nonlinear current source terms in Table 3-1 are

similar to the nonlinear terms whose transforms were derived in section

3-2, except for the nonlinear dependent source terms, which are func-

tions of two controlling voltages u and v. The form of the transforms

of the nonlinear dependent source will, however, be similar to the other

nonlinearity types. These can again be written by inspection. For ex-

ample,

a2 0 u ( t) 2 = a2 0 u l ( t )u 1 (t) 1 a20 U(Sl)UMs2 (3-65)

allu1 (tv (t) = aliu 1 (tl)v 1 (t 2 ) - a11 U(S 1)Vs 2) (3-66)

a20u
1 (t)v 2 (t) = a2 0u

1 (t1)v 
2 (t2,t3) - a20 U(s1 )V(s 2 ,s 3 ) (3-67)

and so on.

We also note that a k-th order current source term in Table 3-1

depends on responses of order less than k, which implies that, in order

to calculate a transfer function of order k, we need to determine the

transfer functions up to order (k-i).

The first order transfer function can be solved for easily. It is

simply the linear circuit response. Therefore,

Y(p)v(t) = i1 (t) (3-68)

For a single input system, 1 (t) = liZ Iv (t) 0 0 ... 0 T , where

V Ct) is the source voltage. Taking the transform of eqn. (3-68), and

assuming that the input source to be an impulse function, we get:
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V (s1) = Hl (s1) = lZ lY (s E)1 1 0 0 ... 0)T  (3-69)

where Hl (s1) was defined in eqn. (3-60).

The equation for obtaining the second-order response, as per eqn.

(3-64), is the following:

_ p)v ) t) = - 2(t) (3-70)

Since the input to the nonlinear circuit is assumed to be an impulse

function, the transform of eqn. (3-70), after using eqn. (3-14), is:

Y(s1+s2) (slS 2 ) = - I(ss (3-71)

The elements of vector I(s can be obtained by performing a two-

dimensional transform on the terms associated with k = 2 in Table 3-1.

This operation, as indicated earlier, can be carried out by inspection.

Thus, we have

=- [Y(Sl+S2_s2 )) 12(sl2s2 )  (3-72)

Likewise we can solve for H3 (ss 2 ,s3). In general, we solve for the

nth order transfer function using eqn. (3-73):

n

InSlS2,' ',n .= Y( si)3-11(s1.s (3-73)
-i=1

We observe a striking similarity between eqn. (3-73) and the equa-

tions for nodal or cutset analysis encountered in linear circuit

anaLysis. A LittLe thought would show that the process of solving eqn.

(3-73) is identicaL to soLving the Linear circuit in Fig. 3-2. We have

nonLinear current sources as inputs to the augmented linear circuit. A
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k-th order vector of transfer functions is obtained by exciting the

linear circuit by the kth order current sources. Just as in the case of

linear systems, superposition can be applied here when a particular ord-

er response is determined from the Lower order responses. That is, a

k-th order response can be obtained by applying the k-th order current

sources one-by-one at each of the ports a.id then summing up the

responses. It is important to note, however, that the complete

responses of order up to (k-1) must be determined before we can obtain

the kth order response by superposition. It is also noted that the

illustration of Fig. 3-2 is for pedagogic purpose and that the nonlinear

current sources are not physically present in the circuit under con-

sideration.

3-5. Multiple Input Circuit Analysis

Much of the foregoing discussion has been concerned with the

analysis of nonlinear circuits with single inputs. However, many appli-

cations of practical significance in nonlinear circuit analysis have

multiple inputs. For example, in-a receiver system, the mixer circuit

has two inputs: 1) the message signal, and 2) the local oscillator sig-

nal. The transmitter again has nonlinear circuits with multiple inputs.

The VoLterra series method is especially well suited for the analysis of

such circuits. In this section we discuss how the various order

transfer functions change as a result of multiple inputs.

From the discussion in section 3-4, it should be apparent that the

anaLysis of nonlinear circuits using the Volterra series method involves

the repeated anaLysis of a linearized circuit. The fundamental rela-

tionship had the following form (see eqn. 3-64):
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Y(p)(t) =4Z--(t) (t) + (3-74)

Y -pP ±vt -i2 -3)

where (t) is the k-th current source vector. The k-th order current

source (k > 2), as per our previous discussion, depends on up to the

(k-1) order voltage ratio transfer functions, is injected at each of the

ports at which the nonlinear elements are present, and is due entirely

to the nonlinear characteristics of the nonlinearity. Furthermore, it

is proportional to the k values of the circuit input multiplied togeth-

er. Thus, the number of elements in the vector 4(t), k > 2, remain un-

changed when multiple inputs are present; only the il(t) vector is

changed.

Consider, for example, the two-input circuit of Fig. 3-3(a). Then,

to solve for the first-order transfer function, we write the vector

transform equations as:

1 1 =(1  (s) (3-75)

where

11(SI) = [Ygl(sl)Vgl(S1) Yg 2 (S1 )Vg2 (S 1 ) 0 ... 0 3T (3-76)

and Y and V are as defined previously. The transfer function vector can

be written as:

l (s 1 ) = 1 0 1(Sl + H01 (s )  (3-77)

where
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1 (2) (s1) T

-g( V gl VgI . l Vg2=0 (3-78)

and

( V(1)s (2) (s1) v(P)(sl T

Vg2  Vg2  VgJ Vg1 =0

where V M is the voltage at port i.

The second- and higher-order transfer function vectors are solved

for by removing the given input sources and arplying the fictitious non-

Linear current sources across the ports at which the nonlinear elements

are present. The vector transform equation for soLving for the second-

order transfer function is still given by:

.H2(SlS2) = -[Y(s I + s2)3
1 Ci(slS 2)) (3-80)

where

I2(SlS 2 ) = [I (1) (SlS 2 )(S2  ) ... 1 (P)(slS 2)] (3-81)

Depending on the nonlinearity type, the general form .)f I ((slS2 ), the

second-order current source across port L, will be:

IL) ) : a H (1) (s )H ( )  (3-82)
12 (s, 2  2 1 1 1 (3-82

where HM (0) is known from eqn. (3-77). The determination of the

higher-order transfer functions is done simiLarLy.

In summary, we note that the presence of multiple input sources in

a nonLinear circuit does not drastically alter the procedure for deter-
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mining the Volterra transfer functions. Only the structure of the

first-order current source vector is changed as a result of multiple

sources. This change is reflected in the values of the elements making

up the second- and higher-order current source vectors, whose structure

remains unchanged.

3-6. An Example

In this sub-section, we present an example to illustrate the ideas

presented in the previous sub-sections. Specifically, we derive the

nonlinear transfer functions for a multiple nonlinearity circuit.

Consider the circuit of Fig. 3-4(a), which contains a resistive and

a capacitive nonlinearity. The nonlinear element descriptions are also

given in the Figure. The augmented linear network is shown in Fig.

3-4(b). The equilibrium equations for the nonlinear circuit can be

written by inspection as:

1G+pC -rr 0 1 (t)1

0 -1/pL 1/pL+glJ v3 (tJ

0 ]2 3 (3-83)

- 2PV2 + 32

0 2 + v3
Lg2v3 93 3 j

d

where v.(t) is the i-th node voltage, p d and G = IR. Each of the

node voLtages can be expanded into a Volterra series, thus giving
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v. (t) V (k (9 ~t) (3-84)
1 k1l 1

where v. (k t) represents a k-th order term in the soLution for the i-th-
1

node voltage. Substituting eqn. (3-84) in eqn. (3-83) for i =1,2, and

3, and equating terms of Like order on both sides of eqn. (3-83), we get

the following sets of equations for the various order responses.

First Order:

GFp -PC 0 v1  t)I Gv5 s t)
-PI CP 1p -1/pL v (1 (t) = 0 (3-85)

L!3 J
Second Order:

r (2) (
G+pC -PC 0 v1  0 C V ~~l (-6

-~PC pC+pC 1 /lpL -1/pL 1 (2) ()CPV0 (32 (-6
0 -1/pL 1 /pL+gl (2) ()I 0

L' 3  Ct U92 3 C

Third Order:

F (3) (t
G+pC -PC 0 1 t

-P p 1 P+ /pL -l/pL V ) 0
0 nP 1/pL+gl

LV (t)
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F 01
C2  2 2 3 1 J(-7

L2g2CV3l 3 3 +g3 vl 3

The higher order response equations can be written similarly. We now

solve for the transfer functions from the above equations.

Taking the one-dimensional transform of eqn. (3-85), we get:

G+s IC -s 1C a 1 1 GV (s1r

-s C s (C +0)+1/s 1L -1/s L V2  (sQ 0 g (3-88)

L0 -1/s 1L 1/s (1 L+gl 3 (s ) L 0]

Assuming v5 s t) = 6(t), and therefore V s) 1 we get:

H 0(1) LZS1 I 03 T (3-89)

where

V (1) (s ) 1 (1 ) 1 (51) 3 ( T
H 0 s 3T(-0

and

s1IC ' - 1 C 0 -

Us) S s 1 (C+C 1)+lI L -1/s IL (3-91)

L0  -1/s 1L 1 1L+g1J

To soLve for the second-order transfer function vector,

H 2 (,I'Sz we must first recognize the foLLowing with (t 1  t t 2  t)
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(2) (E~h2  ( T( T) C t)TdL~v1  (03) = L"f i Ti.02 )vs t 1 )vs( 2 -T2 TI l 2

= H(2) (s1 s )V5 (S )V (S) (3-92)
i 2 s 1 s

Since V s(s 1) V (s 2 ) 1, the right-hand side of eqn. (3-92) is identi-

caLLy H (2) ~'~ SimiLarLy, we write (with t, t2 =t):

) (1)s2)

[t~)) = LE ffV(' (Ti)V~l '(T )6(t-T M6t2 -T )dT dT I

(1) ,V (2)( (393

We~~~~ not heethtS2i

Wenoe er tatV i l 1 _ H (s) since v5 Ct) = 6(t).

Taking the two-dlimensionaL transform of eqn. (3-86), and substitut-

ing eqns. (3-92) and (3-93) in it, we get:

(2) (s -( + (1[ ( S)CH0) (H

2 s( )H(0I)3T (3-94)

where Hj, Z are defined in eqns. (3-90) and (3-91).

To solve for the third-order transfer function, we proceed in a

simitar manner. However, as mentioned in section 3-4, symmletrization

operation is used in soLving for the third,-,order transfer function vec-

tor. The symmetrization operator is associated with the

Ev f)(t)v 2) (03 term. To see this,, we write
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lv~~~l) QV2(0 =1V (1) (t )v (2) (t +V()( V()(

+ 41 (t3  ( (tlt 2 )3 (3-95)
tl=t2=t3=t

v1 (t ) ( 2,t3) (3-96)
i 1 i

We note that when we let tI = t2 = t3 = t in eqn. (3-95), the two sides

are identically equal. As mentioned previously, the variables t's are

used for mathematical manipulations; the final analysis involves only

one variable t. Thus, with this in mind, we note that the response, as

a function of t, will remain unchanged when symmetrization is performed.

Proceeding in a manner similar to that for solving for the second-

order transfer function vector, we obtain the following third-order

transfer function vector:

H_(3 )(s 1 ,s2 ,s 3 ) = USl+S2+S 3

0

(S +S +s3)E2C H (I)(S )H (2)(s (13 ) (Sl. )(1) )H.(1)(s 3-7
212 S22 3 (3-97)

292H3
1 ( 1  3H 

2 1S 9H 1 3 2 3 3)

We note that all the quantities on the right side of eqn. (3-97) are

known, and thus we -can solve for the third-order transfer functions.

Our derivations here have been fairly detailed; it should, however, be
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pointed out that the form of these transfer functions can be obtained in

an algorithmic manner by inspection, thus rendering Volterra series

method a viable approach for computer aided analysis of nonlinear cir-

cuits.

8
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CHAPTER 4

STEADY-STATE AND TRANSIENT ANALYSIS

4-1. Introduction

In the analysis of nonlinear systems, two main classes of solutions

are generally sought: 1) steady state, and 2) transient response. In

this section we show how these solutions can be obtained via the Volter-

ra series method.

In this section we present how the steady state and the zero-state

transient responses can be obtained from the generalized transfer func-

tions, which can be obtained in an algorithmic manner - as was shown in

section 3. For the sinusoidal steady-state response we deal with the

case of multi-tone input; for the transient response, we treat the case

of input signals which are Laplace transformable and factorable - which

clearly includes a Large class of signals used in everyday application.

No numerical integration is required in obtaining both these solutions.

Section 4-2 deals with the subject of obtaining the sinusoidal

steady-state solution using the generalized transfer functions. Section

4-3 presents the approach for obtaining the zero-state transient

response.

4-2. Sinusoidal Steady-State Analysis

In linear system theory, the sinusoidaL steady-state response is

intimately tied to the transfer function of the system. A similar

result is found for higher order responses using the Volterra series

method: an n-th order response at a particular frequency is directly re-

Lated to the n-th order transfer function. In this section we develop
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this relationship.

If the harmonic input method [7,10-14J had been used in deriving

the generalized transfer functions in section 3, the relationship

between the n-th order steady state response and the n-th order transfer

function would have been self-evident. But, since multi-dimensional

transform-theory was used to derive the generalized transfer functions,

this relationship must be developed. We treat the specific case of n=2

in section 4-2.1 and then derive the general relationship in section

4-2.2.

4-2.1. Second-order Sinusoidal response:

The second-order output, according to the Volterra series, is given

by:

Y2 (t) = f h2 (t-=,t-r )x(r)x(t2)dl d 2  (4-1)O0 0

Consider the input signal comprising two unit sinusoidal signals at fre-

quencies wa and wb. The input x(r) is therefore:

X(T) xp[exP a r)+ 'exp (-jw a r) + Exp(jw bT) +exp(-w b T] (4-2)

Substituting eqn. (4-2) in (4-1), we have:

y 2 (t) ff h2(t-l,t-t 2

O00
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[exp(jwa-r 1)+exp(-jw a T 1 exp(jw b .1 )+exp(-jw b.)I

* [eP~iar2 +ex(-iar2  + xp~wbT)+exp(-jwr)

Considering one cross term only,

; j h (t-t1,t-r) I exp(jwaTl+jW T )drldr2  (4-4)

and Letting a,~ t-r1 and a2 = tr 2 and carrying out the integration

yields,

2 a b a b

Considering the other cross term simiLarly yields

1~ H (ijW )exp~j(46

However, if H 2(s 1,s 2) is symmetrical in its arguments, as they are as-

sumed to be in this dissertation, then the terms in eqns. (4-5) and

(4-6) are equaL. The compLex conjugate terms appear similarly. Hence,

the output at frequency w a +W b is.

y(t) W = IH 2 QW ajob )IcosE(Wa+W b )t + 6 &+ (4-7)
aa b

The 2waor 2w b term and their complex conjugates appear only once in
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eqn. (4-3); hence, their magnitude will be INJ2(W ajwa)I and

71H 2 (jwb,lwb)I, respectively. If only one frequency input was present,

the results would be similar. The second-order output would then be:

2(t ) = IN2(Wa-Jwa)I + 2 cos(2w t+e ) (4-8)

2(t 2 a a 2a

Thus, if we know H2(SIPS2), then the quantities in eqn. (4-8) can be

easily evaluated. This is analogous to the case of linear systems,

where the complex variable s is replaced by jw to compute the response

at ,w.

If more than two-tones were present at the input, the second order

response would be evaluated by taking all combinations of two frequen-

cies at a time.

The response of the third and higher orders is similarly treated.

We now present the general case.

4-2.2. General Sinusoidal Steady-State Analysis.

In this sub-section, we develop the relationship which can be ap-

plied directly to compute the sinusoidal steady-state response of a non-

linear system from its nonlinear transfer functions, which can be ob-

tained by the method presented in section 3. The discussion here relies

heavily on [103.

Consider a nonlinear system excited by the sum of K distinct tones;

i.e., defining N = 2K,. we have,

?N

, x(t) -- Ai exp(jwat) (4-9)
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where w. will include both positive and negative frequencies, and Ai for

a negative frequency will be the complex conjugate of Ai for the posi-

tive frequency in order to have x(t) real. Then, the nth order output,

Yn (t), is given by:

n
= f ..f h (T , ,r ) IT x(t-Ti)dr.

n-fold n

1 n N
-= h ("hnr1,...,n) Y, Akexp jwk(t- i) idT. (4-10)

2 =1 k .=l

Carrying out the product operation in eqn. (4-10), we get a function

Yn(t) containing Nn terms, given by:

N N
Yn (t) = L ..o -A A Hn W . Pjwk

k1=1 kn=l 2 An k k n n kl1 Jn

expEj(wk +...+Wk )t3 (4-11)

Notice that in arriving at eqn.' 4-11), we have performed the T. in-1

tegration in eqn. (4-10), thus giving rise to the n-th order transfer

function in eqn. (4-11). As the indices ki are varied over the range 1

to N, many of the terms will be at the same frequency. The number of

terms at various particular frequencies will vary according to what fre-

quency combinations are taken. For example, in the case of n=2 in sec-

tion 4-2.1, there were two cross frequency terms, while there was onLy

one second harmonic (at 2wa ) term. SimiLarly, for n=3, there are six
a

terms in eqn. (4-11) at frequency wa+wb+wc-€ three terms at 2w a+wb, one
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term at 3wa, etc. The nonlinear transfer functions, which make up the

coefficients of these frequency terms, differ only in their arguments.

However, since the transfer functions are assumed to be symmetric, the

coefficient of the output at frequency w a+w b+Wc (in the case of n=3)

can be multiplied by 6. This obviates the need for taking all combina-

tions to compute the output at w a+w b+W c. Likewise we handle the case of

other frequency combinations. With this insight, we can peek at the

problem from a different perspective.

Let mlVm2,...,m N be non-negative integers. Then, the number of

terms at frequency w, = m1 1 +m 2 W2+...+m MWN is equal to the number of

ways of forming m1Wl+.. .+mNwN
. In the n-th order output spectrum to a

multi-tone input, each term is evaluated by taking a distinct combina-

tion of n input tones at a time. To compute the n-th order output when

the input frequencies are lw2,...PwN, we must therefore restrict mi in

the folLowing manner to compute w:

mI + m2 + at* + mN = n (4-12)

Now the problem reduces to the following: find the number of ways in

which n objects can be divided into N groups of which the first contains

m1 objects, the second m2 objects, etc. The solution to this problem is

given by the multi-nomial coefficient [403:

~n!
- n (4-13)n,N mlm ...mN -

By deriving eqn. (4-13), we have obviated the repetition of terms that

is inherent in eqn. (4-11). An equivaLent way of representing eqn.

(4-11) through the use of eqn. (4-13) then becomes:
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m1 m2  mN
A A2 .. ANY(t)1 1 2

n,N n,N 2n

* Hn(JW 1 ,...,jw 2 ,..., " ', jWN,#...)

mltimes m2times mNtimes

" exp[j(m I +... + mNWN)t (4-14)

Since y n (t) is real, eqn. (4-14) aLso contains the complex conjugate

terms. Thus, the coefficient of the sinusoidal term at frequency

ml 1+...+m N N in the n-th order output is given by:

A m .A

Cn,N 2n-I Hn (11 ...oJw2,....jwN,..) (4-15)
mItimes m2times mNtimes

In computing the entire n-th order response in eqn. (4-14), we take all

distinguishable combinations of m. satisfying eq. (4-12). According to*1

[403 there are

n+N-1
= =n+N-1 (n+N-1)!

Sn,N n = n!(N-1)! (4-16)

such combinations.

Equation (4-14) is the fundamental relationship between the n-th

order output and the n-th order transfer function. At first glance, the

evaluation of this equation appears to be a formidable task. But, after

some thought, one finds that this is not such a difficult task after

all. We, however, defer the discussion* of this till section 5.

*A computer impLementation for n-2.3 appears in E413. One can ex-
tend it for any n, with the ultimate limitation being the storage.
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We now illustrate the use of eqn. (4-15). We assume that the non-

Linear transfer functions are known. The case for n=2 can be easily

verified from the discussion in section 4-2.1. For a two-tone input at

W1 and w2 and n=3, we have the following cases:

(a) The output at w1 and w2 have the following amplitudes, respectively:

3!1A2 1 IH3 " J (4-17)

3!A IA 112
Y3 (t)] W2  T4)1!1!1! IH 3(JwI"-JwI"Jw2)1  (4-18)

(b) The output at 2w 1 +W2 has the following magnitude:

3!A2 

Y1(t) 2 IH (J (4-19)
y3  2w +W2  Tu2y~Ti 3 1H3 jwjwj 2)I

(c) The output at 3w has the following magnitude:

3!(A
Y3 (t) 3 ( ) H3 (jwl 1,Jwlw)I (4-20)

The other combinations can be carried out similarly. For the above

cases we make the following observations: both eqns. (4-17) and (4-18)

are similar to obtaining the output at wa+wb+ic, and therefore we see a

3! (=6) multiplication factor*, which accounts for the six combinations

at w +w w+t that were mentioned earlier; eqn. (4-19) is similar to ob-

*The constant factor 4 in the denominator appears consistently in

all the output terms, and is therefore not regarded as a variable
multiplication factor here. This factor appears due to the way x(t)
was expressed in eqn. (4-9).
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taining the output at 2wa+b and therefore has a multiplication factor

of 3, which again is in accordance with our earlier discussion; eqn.

(4-20) is like evaluating the output at 3a, and hence has a multiplica-

tion factor of 1.

In section (3-5), we dealt with the analysis of multiple input non-

linear circuits. In obtaining the sinusoidal steady-state response of

such circuits the material of this section is still applicable. Howev-

er, care must be taken in keeping track of the various input frequen-

cies, and their associated transfer functions, when such an analysis is

wdrranted.

4-3. Transient Analysis usin Volterra Series

In Linear system analysis, the most fundamental relationship

between the input and the output is the convolution integral. Thus, to

compute the output response, one merely convolves the input function

with the impulse response function. However, when the input function is

Laplace transformable, the convolution operation is rarely performed and

one resorts to the simpler transform methods for obtaining the system

response. The transform method involves the use of the system transfer

function.

A scheme, analogous to the transform domain method in linear system

analysis, can be devised for obtaining the response of a nonlinear sys-

tem via the Volterra series method. Again, the inputs allowable under

this scheme must be LapLace transformable. This restriction is not very

severe since most of the inputs considered in everyday applications are

Laplace transformable. The scheme presented here uses the generalized

transfer functions and the transform-domain description of the input to
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compute the output. The response thus obtained is the zero-state time-

response.

The basic problem considered here is: Given the generalized.

transfer functions of the nonlinear system and the transform of the in-

put, determine the output response without performing a convolution in

the transform domain. A procedure, due to George [5], helps to solve

this problem by associating time variables in the transform domain.

That is, given Y2 (slS 2) as the transform of the output function

Y2 (tlt 2), then Y2 (s), the transform of Y2 (t), will be found directly

from Y2(sS 2 ). This technique is called "association of variables" and

is applicable to the class of lumped systems. Lumped systems have the

property that all the generalized transfer functions are factorable

(just like the linear situation); that is, if

f(t lt 2) = f1(t1 )fl(t 2) (4-21)

then

F(sls 2) = F(s )F(s ) (4-22)

The examples in section 3 - in particular the example in section (3-) -

illustrate the concept of factorable transforms.

In the following sub-section we present the "association of vari-

able" technique. In section 4-3.2 we apply this technique to the time-

domain analysis of multiple node, multiple-nonlinearity circuits.
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4-3.1. Association of Transform Variables

The association of variables technique [5) is derived here for the

second-order response. For higher-order transforms, one simply associ-

ates variables successively using the resuLts for the second-order

case.

The two-dimensional transform pair is related as follows:

Y2( SlS 2) = f f y2 (t lt 2)exp(-sltl-s 2t2)dt1 dt2  (4-23)

and

Y2 (tl,t2) = 2 ff Y2 (Sls 2 )exp(sltl+s2 t2 )ds1 ld2 (4-24)

We would like to find

Y2(t1) = Y2(t1ltl) (4-25)

without actually performing the inverse transformation indicated by eqn.

(4-24).

The transform of Y2(t1) is Y2 (sl), where

2  = j) g Y2(s)e lds (4-26)

But from eqns. (4-24) and (4-25) we have

y2 (t 1 ) = y2 (tl,t 1 )
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1 c..,.2 ff ds ds2 Y (s1,s)e ( 1+s2) 1  (4-27)

Letting s1+ S 2 =s, we have

Y2 t 1 1 exp(st )ds

1 2 ir 1

Equating (4-28) and (4-26), we have

1 -
Y 2 (s) y SS22)l (4-29)

Equation (4-29) still involves a convoLution operation, and hence is not

too useful for our purpose. In the case of Lumped systems, where the

transfer functions are factorable, this convolution can be performed by

inspection. For example, a typical second order transform is of the

following form:

Y (Sx *Y *Z ( 0
2 1s,s2z) I 1+S 2+x s 1 -i +(4-30)+

Then, substituting eqn. (4-30) in eqn. (4-29), we have:

14

Y (S) * Y ds
2 Si +S - 2 s+x s- 2+ s+ 2
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= x " 1 y Z dls 2 (4-31)

The integral in eqn. (4-31) reduces to:

SY zy _ds (4-32)
3 s. (S~y) s2 sz s+y+z

Thus, we find that:

X becomes X
S1+S 2+X S+x

and

I - becomes yzS 1+y 52+z s+y+z

A List of commonly encountered transform terms in Lumped nonLinear sys-

tems aLong with their transforms after the association of variables is

given in TabLe 4-1. A more detailed List can be found elsewhere E243.

TabLe 4-1. List of. Associated Transforms

MuLti-dimensional Transforms Associated Transforms

F(sI+S 2+...+s n) F(s)

k k
(s1+a) (s2 sab

k k
(s +S +a) (s 4b)(s 2+c) (s+a)(sTb+c)

k k
(S1+S 2 +s3 a)(9 1Sb)(s2+c)(s 3+d) (s+a) (s+b+c+d)
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Table 4-1. (contd.)

(s +S2+S3 +a)(s 2+s3 +b)(s 1 +c)(s 2+c)(s 3+c) 2a-b s+a L+

4-3.2 Transient Analysis of Nonlinear Circuits

From the discussion in section 3, it is apparent that the analysis

of lumped nonlinear circuits reduces to the repeated analysis of the

augmented linear circuit excited by nonlinear current sources. The

terms that make up the nonlinear current sources, as per TabLe 3-1, are

factorable. Thus, the "association of variables" technique can be ap-

plied to obtain the transient anal:-'s of nonlinear circuits. We now

discuss how the various order responses can be obtained. We consider

the unit step input case here; the cases for other factorable inputs can

be handled simiLarly.

FIRST ORDER RESPONSE:

The general form of the first-order transfer function for the aug-

mented linear network, ignoring multiple poles*, is:

IN P. M k
H = P-, + ' RkS (4-33)

1=1 S I +pi k=O k1

where Pi, Pi and Rk are complex constants. Then if X(sl), the transform

of input x(t), is factorable, the response YI(s) will have the same form

as eqn. (4-33). We note here most of the inputs used in practice are

factorable; that is, they can be expanded into partial expansion form as

*The case of multipLe poles can also be handled by the "association

of variabLes" technique. In our discussion here, we do not treat
this case.
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in eqn. (4-33). Specifically, if x(t) is a step function, then the out-

put, Y1 (sQ, will have the form:

A N A. M-1
Y (s 0 i + E Qs k(-4

i=1 1i'Pi k=O k 1

The time-domain response can be easily determined from eqn. (4-34) by

taking the inverse Laplacetransform.

SECOND ORDER RESPONSE:

The equation for determining the second-order transfer function is

(see section 3.3):

1!2 (sl,s 2) = -Z(s1+s 2 ) 1.2(s1,s2) (4-35)

where,2 is the vector of second-order transfer functions for the muLti-

pLe node, multiple nonlinear circuit, Z(sl+S 2) is the inverse of the re-

duced admittance matrix, and I2(SlS2) is the vector of second-order

current sources. For the four types of nonlinear elements described in

section 3-3, the elements of the vector 12(slS 2) will be of the folLow-

ing form, depending on the type of nonLinear element:

NonLinear Resistor:

IP(s1,s2)= a2HP(sl)HP(s) (4-36)

2 l's2 2 1 11 2

NonLinear Dependent Source:

IP(SlS2) r r a2qS q

a2 I(Sl(sH(S 2 ) +H(s )11(s

' 104 i
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+ 1 C a1 1 H(s 1 )H1q(s 2 ) + H q(s)Hr(s2 )l (4-37)

Nonlinear Capacitor:

I (si,s 2) = (S+S 2 )a P(s)H (s2) (4-38)

Nonlinear Inductor:

I l(ss) = a2HP(s )HP(s )/(s +S2) (4-39)21IP2 2 11 1 2 1 2

where I2 is the current source at port p, a. is the coefficient of the

quadratic term of the nonLinearity, and H is the first-order transfer1

function from the input port to port j. Thus, depending on the number

of nonlinear elements, the second-order transfer function H can be ex-

pressed using eqn. (4-35) as:

K
NH(SlS 2) =L (S ZLk (s +S 2)12(s (4-40)

where zlk(sl+S2) is the L,k element of Z(sl+s 2 ) and K is the number of

second-order current sources.

Observing the form of eqns. (4-36) through (4-39), we recognize

that the output transfer function will be made up of a summation of

terms of the following form:

2 (s1 ,S2) = I(Sl+S2)H1 (S1 )lI(S 2) (4-41)

where A denotes the "partial" transfer function, and I is obtained
2

after the (sI+S 2 ) term appearing in eqn. (4-38) and (4-39) has been

Lumped with z(sI+S 2). Then for an input x(t) having transform X(s), we
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have, the partial output, ?2 (s1,s2), given by:

Y2 (Ss 2) = A2(Ss 2)X(s1)X( s2

= (s1+s2)H1(S1)X(s1)H 1(s2)X(s2) (4-42)

Recalling that H1(Sl)X(s1 ) is the Linear response at a particular port

in the circuit, we can re-write eqn. (4-4?) as:

2(s1,s 2)= Vs +s2)y1(s11+))Y 1 (S2)

A. A.

= 2(1+s2) (4-44)1 i2) Sl1+pi s 2+Pj

Equation (4-44) has the same form as eqn. (4-30). Therefore, we can ap-

ply the "association of variables" technique by inspection to solve for

2(s) , and then for P2 (t). By taking all the terms in eqn. (4-40), we

can obtain Y2 (t), the second order time-domain response to an input

x(t). It should be noted that the terms Q k sk, which were present in
k

eqn. (4-34), have been dropped from eqn. (4-44). This is because func-

tions such as impuLses, doublets, etc. do not exist when squared.

THIRD ORDER RESPONSE:

The equation for determining the third-order transfer function vec-

tor, H3 (sls 2,s3), is:

H3(SlS 2,S3) -Z(s +Sz+S )I (S sS, (4-45)
3 11 ' 3 12 3=3V2

where Z(.) is the inverse of the reduced admittance matrix and I (.) is

the third-order current source vector. The elements of the third-order
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current source vector depends on the type of the nonlinearity. 'The form

of these elements are as follows:

Nontinear Resistor:

IP'si- 3)aHPs)H~ + a NP(5 )HP(s )HPCs )(4-46)3 "2--~ 3 22 1 ( 1)H2(s2 s 3 1 1 1 2 1 3

Nonlinear Dependent Source:

I(Ss,~ 3  2a20H r(s )H rH(s) + 2a02H q(s1 )H q(s2,s3

+ a 1 H r(s1 )H q(s2,s) + H r(S1,s)H q(s 3)

+ a830 ri Hr1( ) + 8 03 r Si(-7
i~l i=1

Nonlinear Capacitor:

IP~s(s +s +S MEa HP(s )HP(s

+ a Hp(s )HP(s )HP(s 3(-8
3 1 1 1 2 1 (448

Nonlinear Inductor:

Cps 's s 2a HpCs )HP(S21 S3
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+ a HP(s )HP(s HP(s )3/(s +S +S ) (4-49)
3 1 1 1 2 1 3 1 2 3

where 1P() is the current source at port p, a. is the coefficient of
3 i

the nonlinearity at port p, and H1 and H are the first- and second-

order transfer functions at port i. Using eqn. (4-45), the third-order

transfer function at port L can be expressed in terms of the individual

third-order current sources in the network as follows:

L K k

H3 (SlS2,PS3 E ZLk(s1+S2+S3)13(S,S2,S3) (4-50)
k=l

where z Ik is the L,k-th element of matrix Z and K is the number of

third-order current sources.

Observing the basic form of eqns. (4-46) through (4-49), we see a

striking similarity. There are basically two types of terms making up

the third-order current sources: 1) due to the squaring operating, giv-

ing rise to H1 (sI)H 2 (s2,s3); and 2) due to the cubing operation giving
3

rise to f H(si). The transfer function at port L, from eqn. (4-50),
i=11

is a summation, a typical term of which will have the following form:

A3 (sls 2,s3) = 2(s1+2+s3)N1 (s1)H2(s2,s3)

+ 2(s1+s2+S3 )HI (s1)HI (s2)1H1 (s3) (4-51)

where A3 is the "partiaL" third-order transfer function, and I is ob-

tained after the (sI+S 2+S3) term appearing in eqn. (4-48) and (4-49) has

been Lumped with z(sI+s 2+s3).

For an input x(t) having a transform X(s), the partial response,

(s1,s2,s3), is given by:
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s 1 s2,s3) A A3(s 10S20S3 Ms 1 XMS 2)Ws 3)

= 2(s1 +S 2 +S3)H 1 (s 1)H 2(s 2'S3)

3
+ 2(s +S +S )H (s )H (s )H (s )] Ul X(s.) (4-52.)

1 2 3 1 1 1 3 =1 I

We now seek t.a obtain ?3(s), the transform of 3 (t00 from eqn. (4-52).

To do this, we Look at each term in eqn. (4-52) separateLy.

RecaLLing* that H 2(S Vs 2) = EUs1 +s2H1(s1)1(S2. we can re-write

the first term of eqn. (4-52) after performting the symmetrization opera-

tion as:

2(s +s +s M2s +s3)M1 (S )H (S )H (s MXs MXs )X(s)

1s +s+)2s +s )+2(s +s )+2(s +S )3
1 ~2s+2+s3) 1 2 1 3 2 3

3
rj HI i)(s M ) (4-53)
i=1

Equation (4-53) is in a form suitabLe for appLying the "association

of variables" technique. We associate two variables at a time to reduce

? 3(s Iszis3 ) to ? 3 (s). For exampLe, considfr the foLowing association

steps:

*see eqns. U4-40) and (4-41).10
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3
V(s 1+s 2 rs 3)Ms 1+s 2) [I I1 (s )XWS )

2 (s1 +S 2+s 3)Ms 1+s 2)y 1 (s )y 1 (s 2)y 1 ( 3)1 @ls

2( (n +s 3)Q(s n ) 1 s3)

=R(s) (4-54)

The association of two variables is identical to the association in-

voLved in determining the second order response. Thus, the partial

third-order response is obtained by repeating this step once.

The association of variabLes involved in the second term in eqn.

(4-51) is quite straightforward. Recalling that H 1(s )XMs) = Y 1(s i) we

can write the second term in eqn. (4-51) as:

3 3 A.
U(~s S+S [i Y (s) 2(s1+s +S3) fl ( ... L.. (4-55)

.~ ~~~~~~ ~ 1 23 ~ . ~

A typicaL term in eqn. (4-55) will be of the following form:

P~s1 ss) Us (1+52+53 12. 2. L3 (4-56)I'S21'3 1 2 3slI+pl s 2+p2 S 3+P 3

Associating two varibLes at a time, the finaL form, P~s), is given by:

It



P(s) = 2(s) 1 2 3 (4-57)s+p1+p2+p3

In our above discussion we isolated the typical terms present jn

the higher order responses to illustrate the application of the associa-

tion of variables techniques to reduce these terms into a form suitable

for obtaining the transient response. By summing up the partial

responses, we can obtain the complete response for the network.

The association of variables involved in determining the complete

response can be done by inspection, provided we have all information re-

garding the poles, and the associated residues, of the Linearized sys-

tem. For adapting this scheme on the computer, an algorithm which pro-

vides all this information must be used. A semi-symbolic analysis (29)

of the Linearized system must therefore be part of the algorithm for

adapting Volterra series computer aided analysis. The main problem in

implementing this scheme on the computer is the need to repeatedly per-

form a partial fraction expansion. For nonlinear resistive networks,

this task is not so difficult if we make use of some of the basic pro-

perties of Lumped linear systems. We will, however, defer this topic

until chapter 5.

Finally, it is noted that the zero-input time domain response can

be obtained by using the ideas presented above. For a circuit with mul-

tiple dynamic elements, this reduces to the multiple-input, multiple-

output problem, where each input corresponds to the initial condition

across the energy storage element.

........
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CHAPTER 5

COMPUTER-AIDED ANALYSIS USING VOLTERRA SERIES

5-1. Introduction

The adapting of Volterra series method in a general simulation pro-

gram has been regarded as difficult by various authors [16,29,43]. As

such, virtually no effort has been spent on investigating the computa-

tional aspect of this method and using it for the spectrum and time-

domain analysis of general nonlinear circuits with polynomial type non-

linearities. Previous works [7,36] have endeavored to check the validi-

ty of this approach by applying it to specific circuit problems using a

computer, but have never implemented the approach in a generaL simula-

tion program.

The only major effort in using Volterra series for general non-

linear circuit analysis has been the development of the program NeAP

10,443. A cursory review of this program reveals the inherent ineffi-

ciency in the computational approach with regards to storage and types

of algorithms used. This inefficiency notwithstanding, there are severe

limitation regarding the usefulness of the program: first, the program

merely computes the numerical values of the nonlinear transfer function

at the various program-prescribed combinations of the input frequencies,

and does not compute aLL the transfer function vaLues which are required

to compute the complete output spectrum. Thus, NCAP does not yield the

entire output spectrum information. Second, to compute up to an n-th

order transfer function, the user must specify n input frequencies,
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which are assumed to be a sum of exponentials and not real sinusoids.

The program, therefore, is severely Limited in its usefulness from the

point of view of a user, who may only be interested in obtaining the

output spectrum - say, for example, up to the third order response to

two sinusoidaL inputs - and has Little use for the numerical values of

the transfer functions at the program prescribed frequencies.

The zero-state time-domain analysis of nonlinear circuits using

VoLterra series approach on a computer has not been attempted before -

not even for a specific nonlinear circuit problem.

In this section we Look at the computational aspect of the VoLterra

series method for general simulation purposes and then present the basic

algorithms for adapting this method for 1) spectrum and distortion

analysis, and 2) for zero-state time-domain analysis to a step input.

A digital computer program, PRANC (Program for AnaLysing Nonlinear

Circuits), which makes use of the algorithms, has been written and im-

plemented on the CDC 6500 computer. A detailed description and program

Listing is contained in a separate technical report (413. Some examples

from the use of this program are given in section 6.

In section 5-2, we present a brief overview of symbolic analysis in

linear circuits, and then describe the reason why a symbolic approach is

particularly useful in adapting VoLterra series for general simulation.

Section 5-3 deals with the implementation of the symbolic approach, and

also contrasts the computational effort between a numerical approach and

the particular symbolic approach used here. The algorithm for obtaining

the complete output spectrum and the various distortion indices is

described in section 5-4; the algorithm for zero-state time-domain

113

IT



analysis to a step input is presented in section 5-5. A description of

the computer implementation of these algorithms is given in section 5-6.

5-2. Why a Symbolic Analysis Approach.

The symbolic analysis of circuits involves the computation of the

ai and b. for network functions in the form
11

N~s) a. si

F(s) = D-)- (5-1)

1

when all circuit elements are known. The more general form

F(SD(s;xi,...,xn) (5-2)

applies when some elements of the circuit xi are kept as symbols. The

advantages of symbolic analysis have been recognized previously 129,45J.

One particular advantage, and the one which is relevant to our problem

here, is that the numerical evaluation of a function at discrete points

is much easier and faster once the symbolic function is obtained than

working repeatedly with a circuit analysis program. With this brief

overview of symbolic analysis, we now proceed to answer the question:

Why use a symbolic analysis approach for adapting the Volterra series

method for general circuit analysis?

As pointed out in the previous sections, a nonlinear circuit is

completely characterized by its VoLterra kernels, or their transforms -

the generalized transfer functions. These transfer functions are then

directly related to the' various order sinusoidal steady-state responses,

as described in Chapter 4. The n-th order transfer function is deter-
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mined from the following equation (see Chapter 3):

n -1s) = Y s)3 (sn) (5-3)
n 1S,...,PS n  ~ i=1

n
where Y( 1 si) is the reduced node admittance matrix evaluated as s

+ s 2 .. + s and I is the n-th order current source vector due to

the nonlinear elements. To compute the output spectrum, we evaluate H
n

at various and many frequency combinations. From eqn. (5-3) it should

be clear that such an evaluation will entail the inversion of the re-

duced node admittance matrix at each of these frequency combinations.

Using combinational analysis, it has been shown [403 that for an input

consisting of M sine waves, the number of inversions involved in an n-th

order response, given by Nn,m, is:

(2i+n- (-4
Nn,m ( (5-4)

Thus, for a 5-tone input and up to a third order analysis, the number of

inversions is approximately 285. For higher order responses, this num-

ber grows up very rapidly.

There are two basic approaches available to handle this inversion

process: 1. Numerical approach, or 2. SymboLic approach. The advan-

tage of evaluating symbolic transfer functions mentioned earlier makes

the symbolic approach more attractive. How much advantage is gained in

using a symbolic analysis depends on how much computational effort is

expended in obtaining the symbolic inverse of the reduced node admit-

tance matrix; thus, we'need an efficient scheme for obtaining the sym-

bolic inverse. The determination of the .symboLic inverse will be the

-.
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subject of section 5-3.

Another reason for using a symbolic analysis is concerned with the

determination of the zero-state time-domain response. The basic step

involved in the "association of variabLes" technique, which was present-

ed in section 4-3, is the prescribed combining of the various poles, and

their associated residues, of the augmented linear network. A pole lo-

cation and its residue can be readily determined once the transfer func-

tion, as per eqn. (5-1), is known. The entries of the symbolic inverse

of the reduced node admittance matrix, which form the higher order

transfer functions, will contain all the information needed to perform

the prescribed combining of the various poles and residues to determine

the zero-state response.

The reasons presented above stem from looking at the computational

aspect of adapting Volterra series for computer-aided analysis. There

are other advantages gained from using a symbolic analysis. An impor-

tant one is that the generalized transfer functions can be obtained as

functions of s. once the inverse of the reduced node admittance matrix
I

is obtained as a symbolic function of s. This can be seen from examin-

ing eqn. (5-3). The formation of the n-th order current source vector

is a bootstrapping operation, as was pointed out in Chapter 3. That is,

an n-th order source is formed from transfer functions of order Less

than n. The first-order transfer function vector is determined from a

column* of the symbolic inverse of the reduced node admittance matrix.

The second order current sources, which depend on the elements of the

first order transfer function vector, are therefore formed from this

*This is assuming a single input circuit.
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column of [Y(s)) - . The second-order transfer function vector is ob-

tained by pre-multiplying the second-order current source vector by

[Y(s 1+s2 )]
I , according to which the second-order transfer function vec-

tor eventually depends on the entries of inverse of the node admittance

matrix evaluated at (s1+S2). The third- and higher-order transfer func-

tions have a similar dependence. Thus, if the inverse of the reduced

node admittance matrix is obtained in symbolic form, with s retained as

a symbol, then a functional description of the nonlinear functions can

also be obtained. A concomitant advantage of this functional descrip-

tion is that theorems from multi-dimensional theory [5) (such as initial

value, final value, etc.) can then be applied to these transfer func-

tions to gain more insight into the workings of the circuit.

In Chapter 2 we developed recursive reLationships to estimate the

error incurred in the truncation of the series solution. This error was

directly related to the L1 norm of the Linear kernel function, which, in

turn, is related to the poles and residues of the linearized system.

Thus, we can get an estimate of the accuracy of our solution through the

pole-residue information provided to us by the symbolic analysis.

5-3. Symbolic Analysis Method

Symbolic circuit analysis by digital computer has been of consider-

able interest in the past decade. Many algorithms and methods have been

derived to obtain symbolic transfer functions of Linear circuits (293.

Most of these methods use tree enumeration (463, signal-flow graphs

(29), or purely numerical methods (473 to obtain symbolic transfer func-

tion between the input and the output. These approaches are basically

useful for single-input, single-output systems. The inversion of the
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reduced node admittance matrix to obtain the open-circuit impedance ma-

trix, which is the problem we are dealing with, is basically a multi-

input, multi-output problem. The methods mentioned above can be adapted

to solving the problem at hand; however, the generation of multiple sym-

bolic functions using these approaches many not be satisfactory because

of excessive computer time requirements. Some other approach is defin-

itely warranted.

Published methods 125-271 for inverting the nodal admittance matrix

when the elements are rational functions of the Laplace transform vari-

able s use pivotal techniques. It may appear that, since it is easy to

program a computer to perform polynomial arithmetic, these pivotal-

techniques are a natural way to approach the symbolic inversion problem.

Results from the use of such a technique have proved to be disappoint-

ing, mainly due to the following reasons:

(a) The process of inversion transforms the nodal admittance matrix,

which contains terms of the form as +k + c, into a matrix in which

every element is a rational function of s. The pivotal technique pro-

duces the inverse matrix where common factors appear between numerator

and denominator, and unless some mechanism is built into the process

whereby these common factors are recognized and removed, the elements

produced will have polynomials of excessively high order.

(b) When the circuit complexity is high, the evaluation of the symbolic

function at high frequency values can give rise to numerical problems.

8
For example, a circuit with 8 poles will have an s term in the charac-

teristic polynomial. When evaluated at 10 Mrad/sec, this term produces

56
a number equal to 106.. Of course, this problem can be alleviated by
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obtaining a partial fraction expansion (PFE) form for the transfer func-

tions. But this again entails additional computations - not to mention

the numerical instability problems involved in root finding.

(c) It has also been found that pivotal techniques become numerically

unstable for higher order circuits.

We therefore seek another alternative for obtaining the symbolic

open circuit impedance matrix.

An approach based on the state variable formulation can be used to

achieve this goal. Specifically, consider the general p-port augmented

linear circuit of Fig. 5-1(a). We wish to solve for the transfer im-

pedances, z. (s), ij = l,2,...,p, from the j-th port to the i-th port.1)

Knowing these transfer impedances, we can write for the p-port:

V(s) = Z(s)I(s) = EY(s)3 -1 I(s) (5-5)

where V(s) = [V1 (s) V2 (s) ... V (s)3 (5-6)-- p

Z(s) = Cz..(s)3 (5-7)

and I(s) = [1 (S) I2(s) ... I (s)3 (5-8)

-- p

Note that the vector V(s) contains entries which are the output voltages

and voltages that control the nonlinear eLement characteristics in the

nonlinear circuit.

To obtain Z(s) symbolically, we write for the network of Fig.

5-1(b), the following state equations:
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A-Y + jL(5-9)

'QX- + IL(5-10)

where x is the vector of state variables, and v and i are vectors whose

transforms appear in eqns. (5-6) and (5-8), respectiveLy. Taking the

Laplace transform of eqn. (5-9) and (5-10), and solving for V(s), we

get:

V(s) IC(sI-A)- B + D3 I(s) (5-11)

and, therefore, we get Z(s) to be

Z(s) £C(sI-A)- B + D3 (5-12)

which is identically the inverse of the reduced node admittance matrix.

The matrix (sI-A) can be inverted by applying the similarity

transformation as follows:

A =M A or A A M

L M 14 (sI-A) =sI -1 AM = sl-A

or (sI-A) = M(sI-A)- M14 (5-13)

where the inverse of (sI - A) is simply diag {(s-x) 1 sx2 -1

where xiare the elgenvaLues* of the.A matrix and N is the modaL matrix.

Substituting eqn. (5-13) into eqn. (5-12), we get,

*Here we assume distinct eigenvaLues; the repeated elgenvalues can
be handLed simiLarLy.
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Z(s) = [CM(sI-A) M B + D)

C(sI-A) 1 + DJ (5-14)

where CM and M-1 B. Equation (5-14) yields the entries of Z(s)

in partiaL fraction expansion form, which, as mentioned previously, is a

more desirable form from a computational standpoint. All information
A

regarding Z(s) is contained in the matrices C, B, D and a vector con-

taining the eigenvalues. An algorithm for implementing this approach is

given in Fig. 5-2. It should be noted that the approach used here is

completely numerical and does not involve any coding and decoding of

symbols.

Now that an algorithm for obtaining the symbolic Z(s) is defined,

we can make a comparison of the computational effort involved between

using a symbolic inverse and the numerical inverse of the node admit-

tance matrix at each frequency point.

The computational trade-off between the symbolic approach and a nu-

merical approach for matrix inversion is very problem dependent. While

a clear-cut winner cannot be established, a tentative answer can be ob-

tained by noting the operations count, defined in terms of multiplica-

tions and additions, involved in the two schemes.

In the case of the numerical approach, the number of independent

nodes, n, and the number of branches, b, are the most important quanti-

ties for determining the computational effort along with the number of

frequency points at which the output is desired. Assuming that no

sparse matrix techniques are used, the numerical inversion of an (nxn)

matrix requires O(n3/3) units of work, where 0 ) I "order of", and 1
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Fig. 5-2. Algorithm for inverting Y(s) symboLicaLLy.
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unit of work = one addition and one multiplication. For k frequency

points, the work becomes O(kn3 /3). This does not involve book-keeping

and other pre- and post-processing steps such as pivoting and iter3tive

refinement, which are usually necessary to insure reliability and

robustness of the algorithm.

In the case of symbolic inversion using our approach, the important

parameters in the computational effort are the dynamic degrees of free-

dom, d, and the number of ports, p, where voltages and currents are in-

jected or measured. Using the QR algorithm 129,483 for computing the

eigenvalues of the A matrix, the operation count is O(8d3 ). The total

work required for obtaining the inverse at k frequency points is there-

fore O(8d3 + kdp2 ).. The number, p, depends on the number of nonlineari-

ties in the circuit, and is usually small. Also, if the network com-

plexity is less than the number of nodes, the symbolic approach would,

in general, require less computational effort. As far as accuracy is

concerned, both the QR algorithm and the Crout's algorithm with pivoting

and iterative refinement yield accurate results.

The efficiency of the symbolic method rests heavily upon the avai-

lability on an efficient process for forming the state equations. The

hybrid analysis method 128,29], which essentially reduces to the

analysis of a resistive network, is well-suited for our purposes here.

We shall discuss this topic in section 5-6.

5-4. Spectrum and Distortion Analysis Algorithm

The output spectrum and distortion indices for a nonlinear circuit

with polynomial type nonlinearities can be computed on the basis of the

material of Chapters 3 and 4. A flow-chart of the basic algorithm for
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such a computation is given in Fig. 5-3. We describe the steps involved

in the following paragraphs:

Step 1: For the given nonlinear circuit, determine the dc operating

point. Expand each nonlinear function into a TayLor series about.the

operating point to get a polynomial representation for the nonlinear

element in terms of the incremental quantities. Thus, for example, a

forward-biased diode having the "global" V-1 representation

I = I 5[exp(qV/nkT) - 1] (5-15)

can be expanded into a Taylor series to yield the folLowing incremental

v-i representation:

i = Io  q v + 10 (_j-q)2 v 2 + (nT) ,. (5-16)

0mkT V T nkT ISTnkT V ..

where 10 is the dc operating current.

Step 2: Lump the Linear part of the nonLinear eLements with the existing

Linear network to form the augmented Linear network. Extract as ports

the nonlinear element branches and the branches that control the non-

Linear element characteristics (dependent nonLinear element case), along

with the output and source branches, from the augmented Linear network.

Let V = IV1 V2 ... Vp 3and I= II 12 ... I denote the vector of voL-

tages and currents for these ports, respectively.

Step3:... Using a symbolic analysis aLgorithm (see Fig. 5.2), obtain the

entries of the Z matrix 'as a function of s, where

V(s) Z(s) I(s) (51?)

for each of the input sources, and their -associated frequency tones,
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Figure 5-3. Algorithm for Spectrumi and Distortion Analysis.
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compute the first-order output voltages at each of the extracted ports

by using the appropriate entries of the Z matrix. This step amounts to

Letting s = jw in z ij(s), the entries of Z(s).

Step 4: The second-order output spectrum is evaluated using the follow-

ing relationship:

V2 (sl,s 2 ) = S .2(SlS (5-18)

The vector I (s1 ,s2) is the second-order current source vector, which is

formed by using the coefficients associated with the quadratic term of

the nonlinear element and the first-order output at the controlling

port(s) of the nonlinearity. The Latter information was obtained in

step 3. The given input tones are taken two at a time in eqn. (5-18),

along with the information derived in section 4-2, to evaluate the out-

put voltages at each of the p-ports.

The third-order output spectrum is obtained in exactly the same

manner. The first- and second-order outputs are used to form the

third-order current source at each combination frequency, which is then

pre-multiplied by evaluating Z(s) at the combination frequency.

Step 5: Perform a histogram analysis of all frequency points and combine

the responses at points which are repeated. The distortion indices are

computed using:

HD2 = 0 (2w (5-19)
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HD3 = IV,0(w i (5-20)3 IVo0(W i)l

where HD2 and HD3 denote the second and third order harmonic distortion

indices.

5-5. Time-Domain Analysis Algorithm.

With Z(s) in eqn. (5-17) obtained in symbolic form, the zero-state

time-domain response to Laplace transformable inputs can be determined

by extending the algorithm discussed in section 5-4. This extension is

carried on the basis of the material of section 4-3. Before outlining

the new algorithm here, we derive relationships for obtaining the com-

pLete second- and third-order responses to a step input. The case of

nonlinear capacitor and inductor is not treated here. As mentioned in

[29], any nonlinear network can be equivalently represented by a non-

Linear resistive network; we therefore treat this case herL.

Consider a network with multiple nonlinear resistive elements, as

shown in Fig. 5-4. As per steps 2 and 3 of section 5-4, we have the re-

lationship (5-17) for the augmented Linear network. Then, for a lumped

linearized system, the transfer function Hl(s), i=1,2,...,p, is of the

following form*:

V.(s) jN1 r.l kM (i)sk (_1

H i)(s (S)( = -N +---- s + (5-21)V.'(S) Zil () E s+pj E Rk
in j1 l k0O

Then, for a step input, the first-order output at each of these ports

is:

*Without any Lose of generality, we have assumed that the source

port is the port number 1.
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IM

MN A~' 1-1 Mi k
(s)~ (5-22)

j=0 s'j k=0

Notice that the first summation index starts from 0 instead of 1. This

accounts for the A 0/s term appearing due to the step input.

The second-order transfer function can be expressed as (see eqn.

4-40 and 4-36):

Ll

where L is the number of nonlinear elements, 82Q is the coefficient of

the quadratic term of the l-th nonLinearity. Then, the second-order

output Y M (s1,s) is given by:

1, 2i (s1H M( X(s ) X(s2

- E z L( +S 2  a 2 H 1  (s 1) X(s 1 H 1  (s 2 I4(s 2

Ll

a - Y M~ (s1+ 2  
1 y l ) Y~l( M (5-24)z1=1 s + 2 1 1 1 S2

Substituting eqn. (5-22) in eqn. (5-24) and removing any impulses, dloub-

Lets, etc., we get the folLowing:

(.)L N A
YM (s2 2  E: z1 (S +S a C
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A M)N

( k +pk ) (5-25)
k=O

2 ,S2 can be reduced to Y M)(s), the transform of yi)(t), by us-

ing the association of variables 153. This yields the following:

ii) (1) (1)
ML M N rjN N A n AY2 (s) - a 2 m F ) ( E s+Pn+p (5-28)

l=1 d=1 n=0 m=0 n m

Since the input is a step function, eqn. (5-28) can be simplified to*:

F) B' Ci)

Y (s) =  k + k (5-29)
k s+ (s+pj)

where Bk and Ck are related to r k's and Ak's, and Pk is related to the

linear system poles, pj. The second-order time response can be easily

obtained from eqn. (5-29).

The third-order time domain response can be obtained similarly. We

do not present it here in order to conserve space. Suffice it to say,

the third-order response can be obtained from the values of the poles,

and their associated residues, of the linearized system without perform-

ing any numerical integration or iteration. We now outline the algo-

rithm for obtaining the zero-state time-domain response of a network

with resistive nonlinearities (see Fig. 5-4):

Step I: From the polynomial description of the resistive nonlinearities,

form the augmented Linear network. Extract as ports the nonlinear ele-

ment branches along with the output and the source branches. Let

*Here we have assumed that the linearized system had distinct poles.
The case of multiple poles can be handled similarly, but it compli-
cates the algorithm for computer implementation.
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C ircuit Topology,

Element Values, and
Source Amplitude

Nonlinear Termsi Linear TermsI[ Set up the state and output
equations using hybrid analysis
for the Augmented Linear Network

III" Iz
Form the inverse of the reduced
node admittance matrix in
Partial Fraction Expansion Form

I 1 st orderl

Perform partial fraction expansion
to compute new residues and 2nd order
"poles" for various order outputs E 3rd 

order

Compute total time response
from the various order responses

Fig. 5-4. Algorithm for computing time-domain response using
Volterra series.
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V 1 V1 V  ... V I and I = [I1 2 ... I ] denote the vector of voltages- p 12 p

and currents for these ports, respectively.

Step 2: Using a symbolic analysis algorithm (see Fig. 5-2), obtain the

entries of the Z matrix in partial fractial expansion form, where

V(S) = Z(s) I(S) (5-30)

Step 3: From the pole-residue information obtained in step 2, obtain the

first-order output response to the Laplace transformable input. This

amounts to evaluating the sum of exponentials at each time step.

Step 4: Next obtain the second- and higher-order responses by appropri-

ately associating the poles and residues of the linearized system.

Thus, !or example, in the second-order case, this amounts to determining

Bk, Ck, and in equation (5-29). Once this information is obtained,

the output is determined by evaluating terms of the form Bk exp(Pt) and

Ck t exp (pkt) at each discrete time point.

5-6. Program PRANC.

The P rogram for Analysing Nonlinear Circuits, known as PRANC, is a

digital computer program, written in FORTRAN IV, that computes up to the

third-order complete output spectrum of a nonlinear circuit with polyno-

mial nonlinearities driven by up to two multi-frequency inputs. In the

process it computes the Volterra transfer functions at each of the fre-

quency combinations involved. PRANC also computes the zero-state time-

domain response of circuits with only resistive nonlinear elements and a

step input.

*Thus, mixer-type circuits can be anaLyzed using PRANC.
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As mentioned previously, the solution of the nonlinear circuit

problem reduces to the repeated solution of the linear circuit. To ef-

ficiently handle this basic problem, PRANC uses a semi-symbolic approach-

[29) for analysing the augmented Linear circuit. Specifically, the in-

verse of the reduced node admittance matrix is obtained in terms of the

symbol s using the state equation formulation as described above.

The state equations for the Linear circuit are formuLated via the

Hybrid analysis method 128,293. If T denotes port branches in the tree

[29) and C denotes port branches in the co-tree of a linear circuit,

then the Hybrid analysis yields the following relationship:

11 H12 13 H14 1T

H21 H22 H23 H24 vc

3 1 N32 H33 H34 vT  0 (5-31)

H41 H4 2 H4 3  H44 ic

H z

By suitably forcing the various ports in the linear circuit into the

tree and co-tree branches, PRANC uses the above formulation for setting

up the state equations. ALL capacitor branches are extracted as ports

which necessarily become part of the tree and all inductors, nonlinear

element branches (which are assumed to be voltage controlled), and input

and output branches, are extracted as ports which are forced as part of

the co-tree. The matrix H is obtained in a form where H1 = I (I being

the identity matrix), 12 H 21 = 0, t22 1 1. This yields the capacitor

currents and the inductor and nonlinear element branch voltages in terms

of known variables. Thus, the A, B, C, and D matrices in the state and
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output equations (see eqns. 5-9 through 5-12) are obtained from the sub-

matrices of H. The formulation of eqn. (5-31) is quite fast, since it

only involves the analysis of a resistive network.

It is noted that the matrix H may not exist in idealized circuits.

However, for most practical circuit this matrix is almost certain to ex-

ist (293. It should also be noted that the above formulation of state

equations tacitly assumes that no degenerate cutsets (all inductor-

current source cutset) or degenerate loops (all capacitor-voltage source

Loop) are present in the Linearized circuit. These restrictions are not

very severe, especially when the realistic lossy models of circuit com-

ponents are taken into account.

The next step in the PRANC algorithm is to determine the eigen-

values and the eigenvectors of the A matrix. For this purpose, the dou-

ble QR algorithm 1483 for obtaining the eigenvalues is employed. The

basic steps, such as matrix balancing, reduction to Hessenberg form,

shift of origin, are employed in this algorithm to make it efficient and

reliable. The eigenvectors are also obtained in the process.

ALL information about the inverse of the reduced node admittance
AA

matrix is stored as three matrices and a vector. The matrices are B, C,

and D (see eqns. 5-14), and the vector contains the eigenvalues. It is

noted that the solution of eigenvectors for repeated eigenvalues can be

a numerical unstable process [493. Thus, the programs outputs a diag-

nostic message when such a case occurs.

The first-order voltage response at the prescribed ports is now

computed from the entries of the open-circuit impedance matrix. These

ports include: source port, output ports, nonlinear element ports, and
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ports which control the nonlinear element characteristics. The response

is calculated for each user prescribed frequency, and stored as a two-

dimensional array: port number vs. the frequency number.

The second-order voltage response is computed at each distinct com-

bination of the input tones taken two at a time. The ports of interest

are the same as that for the first-order response. The second-order

current source vector, at a particular frequency combination, is formed

by considering the nonlinear element type and the voltage(s) controlling

it, which is determined from the first order response array. This vec-

tor is pre-multiplied by the open-circuit impedance matrix evaluated at

the combination frequency to obtain the second-order transfer function

vector at that frequency. The response voltage at this frequency is

then determined from the transfer function value. The second-order

transfer function values are again stored as a two-dimensional array:

port number and the particular frequency combination.

The third-order response is determined similarly. The third-order

current source vector is formed by properly picking out the values of

the first- and second-order transfer functions. The indexing of the ar-

rays is of critical importance to the efficient implementation of this

scheme.

When the time-domain response of a circuit with only nonlinear

resistive elements is desired, the procedure is identical up until the

formation of the symbolic open-circuit impedance matrix. The first-

order step response is easily evaluated using the pole-residue informa-

tion of the linearized circuit. The second-order response is evaLuated

by performing the association of poles and residues in a prescribed
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manner. The third-order response is computed similarly. No numerical

integration is used in these computations.

Since the hybrid analysis forms the basis for forming the open cir-

cuit impedance matrix, the following Linear elements are allowed by the

program*: resistors, capacitors, inductors, voltage or current sources,

and all four types of controlled sources. The nonlinear elements are

assumed to be voltage controlled, with the following polynomial descrip-

tions:

ip= alf~v I + a2 fEv2
] + a 3 (5-32)

ip a10 vq + aa 2 + a2v +

3 3 2 2
al1vvr + a30v3 + ao3Vr + al2vqvr + a21V2V (5-33)

q r 0q r+ q rV

where in and vn are currents and voltages across branch n, f is a linear
t

operator of the type -t f, or constant, and aij are constants. It

should be noted that eqn. (5-33) modeLs a 3-port device.

In the present version, PRANC imposes the following restrictions on

the circuit parameters: maximum number of elements (both Linear and

nonLinear) = 50; maximum number of nonlinear eLements = 10; maximum num-

ber of dependent nonlinear elements (eqn. 5-33) = 5; maximum number of

reactive elements = 20; maximum number of independent nodes = 30; number

of input frequencies = 5. These restrictions can be relaxed if desired.

The modular structure and algorithms of PRANC makes it possible to ex-

tended the order of analysis in a straightforward manner. The Limit on

*A direct nodal analysis would only alLow for voltage controlled
current source.
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the highest order will eventually be dictated by the storage restric-

tions of the computer.

The validity of the results obtained from using PRANC has been ver-

ified through hand-worked examples and comparing with the results ob-

tained from NCAP [443. In the next chapter we will present two examples

showing the results obtained from the use of PRANC.

I
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CHAPTER 6

NONLINEAR CIRCUIT ANALYSIS EXAMPLES

6-1. Introduction

In this section, results from the analysis of two nonlinear cir-

cuits using PRANC will be discussed. For the sake of brevity, the cir-

cuits are kept simple. A brief comparison of the execution times for

PRANC and NCAP £44) is also included in this section.

Previous works 17,10,363 have used the Volterra series method to

study the distortion phenomenon in transistor amplifiers. These authors

show a good agreement between the predicted and the measured values of

the response for small signal operation. Thus, the Volterra series is

established as a viable approach for analyzing nonlinear circuits. In

section 6-2, a single stage untuned amplifier is analyzed using PRANC.

Time-domain analysis using the Volterra series method has not re-

ceived much attention in the literature. As such no practical circuits

have been analyzed using this technique to study the validity of the

results obtained. In section 6-3, the step response of a simple non-

Linear circuit is obtained. These results are then compared with those

obtained from a numerical integration method.

Finally, section 6-4 compares the execution times for the specific

circuit examples analyzed using PRANC and NCAP.
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6-2. Spectrum and Distortion Analysis Example.

Consider the single stage untuned bipolar transistor amplifier cir-

cuit shown in Fig. 6-1. This circuit configuration has been taken from

103. The results obtained from using PRANC are in excellent agreement

with those obtained from using NCAP, which, as reported in 110], are in

good agreement with the measured results.

The equivalent circuit model E7] used for the bipolar transistor is

shown in Fig. 6-2. It contains three nonlinear elements: a nonlinear

resistor, a nonlinear capacitor, and a dependent nonlinearity. The

operating point of the transistor is: VCE = 1OV, I= lOmA. The per-

tinent parameters of the transistor are given in Table 6-1.

Table 6-1. Transistor Parameters for the Circuit of Fig. 6-1.

Parameter Value Parameter Value

IE  11.4mA n 4.6
1C 1O.OmA a 0.125
ICmax 150. mA rb I.OIQ
h FEmax 8.2 re 2.30
VFCe 9.27 V r 635ka
V 140. V CE 1040pF

u 0.348 C 11.lpF
k 25pF C3 1.5pF

The nonlinear elements, using the Taylor series expansion of the

anonlinear functions, are represented by the following polynomials:

*These parameters depend on the transistor type.
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K(v 2 3 (6-1)iR =~ R  1 glR + gVR + g3vR

2 3
dv c  dvC dvcC= P(V C L + C + C (6-2)

C2-t C3dt

ig = G(vv = 91oVR + 1 v g2R + 2

g 'cb R 01 cb + 20R + 02vcb

+3 3 2 + 2 (6-3)
g11vRVcb + 3 0VR + go3 Vcb + g2lVRVcb g1 2 VRV cb

Using the analytical formulae for gi, CCi, and gij derived in 173 and

the transistor parameters given in Table 6-1, the numerical values of

the coefficients of the polynomials appearing in eqns. (6-1) through

(6-3) are obtained. These values are given in Table 6-2.

The values in Table 6-2 along with the Linear element values, the

circuit topology, and the source information are used as the input in-

formation for PRANC. The effects of the frequency and the input ampli-

tude on the output response are discussed below.

6-2.1. Effect of Frequency: The effect of frequency on the system

response is directly related to the effect of frequency on the transfer

functions. In the following paragraph we elaborate on this concept.

The relationship of the first-order steady state response and the

first-order (linear) transfer function is well understood. For the cir-

cuit of Fig. 6-1, the first order transfer function magnitude charac-

teristics is shown in Fig. 6-3. It should be apparent that the amplif-

ier has a fairly broadband first order response.

The magnitude characteristics of the second-order transfer function

as a function of frequency can be plotted similarly. However, in this

1.1.
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Table 6-2. Coefficients of the polynobmiat type nonlinearities in Fig.
6-2.

Nonlinear Ccc fficient
Element Values

Emitter Resistive g 1=0.4348 2 g2=8'291
Nonlinearity, K(v R 93 =1.054x10e

Collector Capacitance Cl = 11.101O-12 C =-1.99601O-13

Nonlinearity, P(vC) C C3=
4.784xo C

Collector dependent 910 O.3856 g01"1 .8710 -8

Nonlinearity, GOvR~vcb) g 20=7"419 9 02=3.633x10-

911=7 21501O- 10  
9 30= 9 466i_5

903=3.397x1- 7  921 =1.38
9121.401 x1 0
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case, two frequencies are involved, and the significance of the magni-

tude plot must be clearly understood. An example of this plot is shown

in Fig. 6-4, which depicts the magnitude characteristic of the second

harmonic frequency response as the input tone is varied from 100KHz to

10OMHz. Similarly, if the magnitude characteristics of an intermodula-

tion frequency, wIM, were desired, a similar plot of IH2(jwi,jwk)l, such

that wi + wk = wIM in the band of interest, would provide the informa-

tion.* Thus, by letting wi -1wIM Y and sweeping wk across the band

of interest, the information on how the magnitude of an intermodulation

product will vary can be obtained.

The magnitude characteristic of the third-order transfer function

has a similar significance. In this case, a combination of three

discrete frequencies is involved.

6-2.2. Effect of Input Amplitude. The effect of the input amplitude

on the distortion products for the amplifier circuit is shown in Fig.

6-5. A single tone at 2.5MHz is used as the input to the amplifier and

the second and third harmonic outputs are computed. On the double Loga-

rithmic paper, we note that the distortion plots are straight lines,

with m 3  > m2  > Mi, where m1, m2, and m3 are the slopes of the first,

second, and third harmonic distortion, respectively. It is noted that

the validity of the small-signal model extends up to approximately 25mV

input amplitude, after which the Volterra series prediction is more pes-

simistic than the measured results for the amplifier C102. Also, the

harmonic distortion indices for a given input amplitude can be deter-

*Since PRANC computes the entire output spectrum, it automatically

takes the negative frequencies into account. Thus the user does not
have to specify, for example, a - 2.5NHz and 3MHz frequency to get
the intermodulation product at O.5MHz.
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mined directly from Fig. 6-5.

6-3. Time-Domain Analysis Example. Consider the simple resistive non-

linearity circuit of Fig. 6-6. The v-i characteristics for the non-

3
linear element is i=1Gv . In this section we will determine the step

response of the circuit using Volterra series method and then compare

the results obtained from an exact numerical integration method.

i -Ov 3

+ +ut

Fig. 6-6. A Nonlinear Circuit

By inspection, the first-order transfer for the circuit is:

S1 +G 1 1H (s1  r 1 p (6 1 W (6-4)

For an input Au(t), the first order response, Y1 (t), is given by

Y1(t) = a(1 - •-pt • Ar (6-5)

Since there is no square term in the nonlinearity, the second-order

transfer function is zero. The third-order transfer function is found

to be:
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_ 10 1H (s)H (s)H (s (6-6)
H3(S1,s2,s3) = (s 1+S 2+S3 )+(G+G1 )/C) 1 1 1 2 1 3

and, therefore, the third-order output:

A3

Y3(slss) = H3 (sls2,S3) SSS
3  (6-7)

Substituting eqn. (6-6) in eqn. (6-7), and carrying out the association

of variables, the third-order response is given by:

.5 3p 0.51 A3/
Y (s) K - - -+ T+3"p , K = 10 A3/Cp (6-8)

Therefore, the approximate response of the circuit of Fig. 6-8 is given

by:

y(t) = yl(t) + Y3 (t)

= a(1 - ept) - K11 - 1.5exp(-pt) - 3ptexp(-pt)

- 3exp(-2pt) + O.Sexp(-3pt)3 (6-9)

The response y(t) can be calculated using eqn. (6-9). The step response

of the circuit of Fig. 6-8 is not as interesting as the error incurred

in using Volterra series. A summary of the error vs. the L, norm of the

linear kernaL function is given in Table 6-3. The norm is varied by

changing the values of R in the circuit. This alters the value of p,

but not of r, in eqn. (6-4). An estimate of the truncation error as

predicted by Theorem 2-2 is also given in Table 6-3. Clearly, there is

a good agreement between the calculated and the predicted values of this
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error.

Table 6-3. Summary of Truncation Error

Calculated Error
1I Norm of Predicted Error*

h(r) 0(30ZG 5 X5) Maximum Steady
State

0.1333 10- 2  10- 2  10-2

0.0909 10- 3  10 3  10- 3

9.9x10 3  10- 9  10- 5  10-I0

*"Order of

6-4. PRANC vs. NCAP

Both PRANC and NCAP (443 are based on the Volterra series method

for analyzing nonlinear circuits. The basic algorithms used by the two

programs are, however, different. PRANC uses a semi-symbolic analysis

procedure, where as NCAP uses a purely numerical approach. Furthermore,

the features offered by the two programs are different. NCAP allows a

free-format input and computes the transfer functions and node voltages

at 2n_1  discrete frequency points, where n is the order of the

analysis. PRANC, on the other hand, requires a fixed format input, but

computes the complete output spectrum. Thus, the number of output fre-

*For NCAP, this happens to be the number of input frequencies also,
since the user must specify n input tones in order to obtain an n-
order analysis.
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quency points for PRANC is much higher than that for NCAP. Because of

the algorithm and the feature differences, the execution times required

by the two programs for analyzing similar circuits are different. In

the following paragraph we compare the approximate execution times for

the two programs on the CDC 6500 computer at Purdue University.

The bipolar transistor amplifier of Figure 6-1 was analyzed on both

PRANC and NCAP. For a two-tone input and up to a third-order analysis,

PRANC required 1.74 sec to computed the complete output spectrum (in-

volving approximately 32 frequency points). For a 5-tone input, it re-

quired 6 seconds to do the same job (approximately 150 points). By con-

trast, NCAP required 7.5 sec to compute the response at 7 discrete fre-

quencies for a three tone input. Other examples exercised on PRANC and

NCAP show a similar advantage in execution times: PRANC, despite pro-

viding more information to the user, requires less execution time then

NCAP. A more detailed comparison of the two programs is contained else-

where [413.
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CHAPTER 7

CONCLUDING REMARKS

7-1. Summary

The contents of this thesis has dealt with the various aspects of

Volterra series analysis of Lumped systems, with polynomial type non-

Linear elements, with special emphasis on nonlinear circuits. The fun-

damental intent behind this work is to show that the VoLterra series

method could be used in a variety of engineering calculations - particu-

Larly computer-aided analysis of mildly nonlinear systems.

By investigating a concrete, ye general, set of differential equa-

tion that characterize Lumped nonlinear systems, a unified theory has

been developed here which can be used to study the behavior of such sys-

tems.

By analyzing how the series solution converges, simple and easy to

use recursive relationships have been derived. These relationships can

be used for: 1) estimating the error incurred in truncating the series;

and 2) determining the bound on the input function for which the series

converges. The higher-order kernel functions are not required a priori

in these reLationships; only the Linearized system need be analyzed to

determine how, if at all, the series converges.

The determination of the transfer function by the direct applica-

tion of the multi-dimensional transforms hhs been developed here. This

approach provides a more direct and rigorous way of characterizing the

system using VoLterra series.

The entire investigation culminated in the development of a comput-

er program which, through the use of semi-symbolic analysis, provides an
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efficient tool for spectrum and distortion analysis of mildly nonlinear

circuits. The time-domain analysis of nonlinear circuits has also been

investigated.

7-2. Further Research

There are several problems that were unraveled during the course of

this investigation. We mention a few of them here.

In dealing with the convergence of a class of Lumped nonlinear sys-

tems, we showed that the truncation error involved three quantities: 1)

the 1, norm of the linearized system, 2) the bound on the system input,

and 3) the coefficients of the polynomial describing the nonlinear ele-

ments. An important consequence of this result Leads to the following

question: How do we speed up the convergence of the series solution and

yet obtain meaningful results? One factor which has a direct bearing on

the answer to this question is the criterion and method used for approx-

imating the nonlinear function by polynomials. By changing the coeffi-

cient values, the convergence would also change. These coefficients

depend on the norm of the error function we choose to minimize when ap-

proximating the nonlinear function by a polynomiaL. Thus, the need for

establishing a criterion (choice of a norm) to arrive at a rapidly con-

verging series is important.

Another problem is related to the interpretation of the nonlinear

transfer functions. We have shown that these can be obtained directly

from the application of multidimensional transforms, In the case of

Linear systems, the poles and zeros have a direct relation to the system

response and stability. Since the VoLterra series solution regards the

Linear system as a Limiting case of the nonLinear system, an important
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question to ask is: Is there a reLation between the nonLinear transfer

functions and the system stability? How does one interpret, for exam-

ple, the significance of p1 in the (slI+s2+p1 ) term in the second-order

transfer function? If these questions can be adequately answered in

terms of the circuit parameters, a significant insight into the behavior

of nonlinear systems would be gained. As pointed out earlier, working

in the transform domain is much simpler and algorithmic as compared to

working in the time domain.

The synthesis problem using Volterra series has not received much

attention. It is an important problem, one which can be used in a

variety of applications. One of them, for example, could be to improve

the received signal-to-noise ratio of a signal subjected to nonlinear

processing.
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APPENDIX

A. For Chapter 2

A-i. Derivation of Eqn. 2-23:

According to eqn. (2-4):

y 2 (t) = j0 z h 2 (TV T 2 )X(t- I) x(t -t2 )dT 1dT 2  (A-i)

From eqn. (2-19), we have

Y2 (t) =-ca Zf f h Tt) (- 1 )(T-T 2 )

X(T 1 )X( 2)d' 1 dT 2dT  (A-2)

We make the foLLowing change of variabLes:

U t T ~> T t U

U t T T=> tr tU (A-3)

2 -t T 2  T> 2

Substituting eqn. (A-3) in eqn. (A-2), we get

Y2(t) -ah (u) ft (u -u) ft)(u -U)2 o1 2

x(t-U )x(t-u )dudu du (A-4)

Re-definining u ,u 1  T ld U2 T, 2 in eqn. (A-4). we get:
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Y()= -Ea ofh(') fl(Tr - T) fl(' 2 T).

X(t - T ) X(t T r2)drdT 1 dT2  (A-5)

Comparing (A-5) with (A-1). we get

h=TP ea f h(T) fl(T,-T) fl(T -T)dTCA6

A-2. Proof of Theorem 2-2:

Given

cc

L(p) y(t) + , a n y(t) = X(t)
n=2

AppLying the inverse operator we get

y(t) +fj h(t - T) [2 a n Yl(T)] dr = foh(t - r)x(r)dr (A-7)

Assuming a series soLution for y(t), such that

y(t) = y1 (t) + y2(t) + Y3(t) + (A-8)

and substituting in eqn. (A-7). we get

0 a1 t n h t r y.(-r))1 d-r h(t -r) x(r)d-r
i 1 n2 1=1 '

(A-9)

SoLving for Y1 (t), y2(t), ... successiveLy in .qn. (A-9), we got

the foLLowing set of equations:
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-l(t h (t = 0 x (T) dr

y(t) + a2i h(t - T) Y 2(T) dr = 0

y4 (-r) + 5or h(t - -0 i n (r) d'r = 0 (A-10)

where i n (- is shown £10,123 to be:

nn

i n M E akyI.,k n> 2

L-m~l(A-li)

Then, for G =f lh(,r)ldr and

X = max Ex (t )3

we get

= Iy(t)I < 6X

.32Y2 5. a2IG X

Y n<Gill
n- n

where Ynis given by eqn. (2-38) after we use *qn. (A-11). The inequaL-

ity (2-3?) then folLows from eqn. (A-8).
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a. For Chapter 3

B-I. Derivation of 2C-tJ

Using the functionaL property of the 6-function, we can write

(t) f ycr )y,(T )dl E2)"t - tQ6(t - 'E2~ t2 (Bi

Introducing dummy variabLes t I and t 2 in eqn. (B-i), we get

y(t ,t2) y 1t M f..rf (T)( 2)
6  

1 - 1i 2 - 2~ d 1 d 2  (-)

Taking a two-dimensionaL transform of eqn. (5-2), as per eqns.

(3-il) and (3-12), we get

Y~sls 2 ) = zR[ (tilt 2)] = Y(si1YMs 2  (8-3)

The derivation for LlYn (t )3 is done simiLarly by introducing n-detta

functions first, etc.

B-2. Derivation of z D"T. y 2t)]

Using the chain rule, we get

d t y y(t) d y(t) = 2y(t) y'(t) (8-4)

Using eqn. (0-2), we re-write eqn. (8-4) as:

2y~t) y'(t) 2 [fof Y (-r1) Y 1('2 ) 6 (t 1  c I 6(t 2 - 2) dT 1dT 2

+ ffY(r 2)y'('tl) 6(t1  T 6(t 2 -t 2 ) dTjdT2  (8-5)

Taking a two dimensional transform of eqn. (0-5), we get
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Y(S 1 's2)=.-[sY 1  + 2s Y(s MYs2) (8-6)

2 (T +s2 )Y(s )Y(s ) )

(1 + s1 Ms2)

The derivation of Z[ Y n (t )] is done similarLy.
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